NEMO, the concept of a high frequency gravitational wave detector

Vaishali Adya for the OzGrav Community

OzGrav

ARC Centre of Excellence for Gravitational Wave Discovery

 \sim

Australian Government Australian Research Council

Overview

- NEMO : <u>N</u>eutron star <u>Extreme</u> <u>Matter</u> <u>O</u>bservatory : technology enabler for 3G
- Key design parameters
 - Science case driven sensitivity
 - Signal Recycling Cavity design
 - Suspensions and thermal noise
- NEMO : tunability with variable SRM reflectivity
- Conclusions

NEMO paper : doi:10.1017/pasa.2020.39 (published in <u>Publications of the Astronomical Society of</u> <u>Australia</u>)

NEMO : The Science

"kHz gravitational wave detectors are way to access stellar particle colliders!"

NEMO paper : doi:10.1017/pasa.2020.39 (published in PASA)

Slide credit : Paul Lasky

NEMO : The Science

- Average number of post merger events detected with with NEMO increased to 1 – a few per year
- Increased sensitivity at kHz places significant constraints on EoS
- Potential to measure phase transitions in hot remnants : deconfined quarks, other exotica

Design Sensitivity

Reference : NEMO paper

ETM NEMO current design choices 4.5 MW Test mass weight = 74.1 kg Test mass coating : AlGaAs/GaAs* T = 5 ppmITMs PRM 312kW ETM 2µm, 500 W • ITM = 150 K, ETM = 123 K ROC_{ITM} = 1800 m; ROC_{FTM} = 2500 m Laser+ BS Suspension material : steel* input optics SR T = 1.4%ç Test mass cooling method : radiative $I_{SRC} = 354 \text{ m}$ **SRM** T = 4.8 % 10 dB injected Squeezed **Output** optics light source + readout Picture modified from : J. V. van Heijningen, NEMO paper 6

NEMO instrument noise budget

Quantum noise manipulation

Long SRC :

- Upper and lower signal sidebands equally enhanced
- Phase picked up by GW sidebands in the SRC cannot be ignored
- Analogous to a DRMI interferometer with two signal recycling cavities

Long Signal Recycling Cavities

- Advantages : Control potentially easier, requires no filter cavity to improve sensitivity around coupled cavity pole
- Robust to losses inside the interferometer: loss per m value relaxed
- Disadvantage: Un-demonstrated (Twin signal recycling control for DRMI, proven concept)

Suspensions and thermal noise considerations

4.5 MW

- Simpler 3-stage horizontal and vertical vibration isolation system, thin steel wire suspensions
- Radiative cooling only
 - 45 cm diameter , 20 cm thick mirrors --> mass 74.1 kg
 - 4.5 MW in the arms; 10.7 W absorption in the ITMs

77 K

• 150 K result of trade offs

PUM

150 K

ITM

CP

Slide credit : J. V. van Heijningen, J.Eichholz, Phys. Rev. D 102, 122003

Laser Sources

- Requirement : 500 W At 2 μm
- 200 W at 1.06 µm level with near required linewidth demonstrated by MIT LIGO\Lincoln Labs and AEI/LZH in Fiber laser systems
- 500 W with required linewidth not yet demonstrated but Thulium-doped fiber c lasers : promising
- <u>External Cavity Diode Lasers at 2 μm</u> : promising

Slide credit : Sebastian Ng, D.Kapasi

2 μm ECDL reference : https://www.osapublishing.org/oe/abstract.cfm?uri=oe-28-3-3280

Search for reference sites

See talk by Bram Slagmolen for details

zGrav

Slide credit : D.Toyra

Tunabililty of NEMO

- How tunable is NEMO** ?
- Assuming no 'dynamic tuning'
- Parameters to could be varied :
 - SRC length : macroscopic and microscopic
 - SRC reflectivity
- Coupled cavity pole depends on
 - T_ITM
 - L_SRC , L_ARM
- Bandwidth of coupled cavity
 - L_SRC and T_SRM

No squeezing included here either!

** Current NEMO design not limited by SRC losses

Results of tunings*

* Statutory warning : Preliminary modelling

Results of tunings*

Variable reflectivity concept :

- LIGO : G050524
- Glenn de Vine, Daniel A.
 Shaddock, and David E.
 McClelland, "Experimental demonstration of variablereflectivity signal recycling for interferometric gravitationalwave detectors," Opt.
 Lett. 27, 1507-1509 (2002)
- A 7 dB reduction by squeezing here would drop these curves by a factor 2.5

* Statutory warning : Preliminary modelling

Building NEMO

- NEMO : strain of ≈ 10⁻²⁴ 1/VHz between 1-3 kHz
- Focus : post merger remnant of BNS
- Part of a global network of detectors operating in late 2020s-2030s
- 4 km NEMO infrastructure could potentially host Cosmic Explorer South
- To do : Assess feasibility of squeezing with variable reflectivity

A happy heterogenous network of interferometers PC : Pixar

Questions / comments ?

Back up slides

Why can we do this?

- Only interested in high frequencies and suspension and coating thermal noise are not dominant at 2 kHz
- Not very beneficial for a broadband detector

Slide credit : J. V. van Heijningen, J.Eichholz, DCC : P2000243

RIN and frequency noise

 10^{3}

10

- RIN/Phase noise requirement at PRC input in GW band
 - 1% power imbalance in arm
 - Safety factor of 10 below
 - ~10pm DC offset
 - Plane wave model
- Requirement around 2kHz:
 - Require RIN of 10⁻⁷
 - Require Phase noise of ~3 x 10⁻⁹
 - Or would need 10⁶ suppression of NPRO noise
- Concern: Higher frequency/RIN noise coupling seen in LIGO than simple model would predict at higher frequencies.
 - Could potentially be attributable to thermal effects which would be significantly less of an issue with cryo IFO

 10^{2}

103

Frequency [Hz]

Requirements here are to beat QN limited sensitivity at GW frequencies, haven't considered requirements in control band yet.

Additional numbers and plots

TABLE I: NEMO optical parameters used in the calculation of the noise traces featured in Fig. 2. The round trip losses due to absorption, scatter, surface roughness and mode-mismatch are shown separately for the ITMs, BS and SRM.

Parameter	Value
Laser Wavelength	$2~\mu{ m m}$
Laser Power	500 W
Arm Length	$4 \mathrm{km}$
Signal Recycling Cavity Length	$354 \mathrm{m}$
Power Recycling Mirror Transmission	3%
Input Test Mass (ITM) Transmission	1.4%
End Test Mass (ETM) Transmission	5 ppm
Signal Recycling Mirror Transmission	4.8%
Power on Beamsplitter	31.2 kW
Arm Circulating Power	$4.5 \ \mathrm{MW}$
Injected Squeezing level	10 dB
Test Mass Material	Silicon
ITM Temperature	$150 \mathrm{K}$
ETM Temperature	$123 \mathrm{K}$
Test Mass Coating	AlGaAs/GaAs
Test Mass Diameter	$45~\mathrm{cm}$
Test Mass Thickness	$20~{ m cm}$
Test Mass Weight	$74.1 \mathrm{~kg}$
ITM Radius of Curvature	1800 m
ETM Radius of Curvature	2500 m
Beam Radius on ITM	$57.9 \mathrm{mm}$
Beam Radius on ETM	83.9 mm
Suspension Fiber Length	$0.55 \mathrm{~m}$
Suspension Fiber Material	Steel
Suspension Fibers per Test Mass	4
Test Mass Cooling Method	Radiative
Interferometer Configuration	Dual Recycled with
	Fabry Perot Arms

DzGrav.

Additional details

- Tilt modes (15 Hz) can be controlled with a bandwidth without injecting control noise into the sensitivity regime of interest
- Parametric instabilities due to 4.5 MW in the arm currently being modelled – potentially controllable in NEMO with AMDs and careful consideration

Additional plots

M OzGrav

23