Cosmic Explorer
Scattering Update

Joshua Smith1, Gabriele Vajente2

1Cal State Fullerton
2LIGO Laboratory Caltech

May 19, 2021
GWADW Virtual
• Scattering from mirror roughness and defects
• Noise from beam clipping and diffraction at baffles
Estimating CE Surface Roughness Requirements

- Roughness PSDs for installed aLIGO test masses:
 - Gray: before coating
 - Pink: after coating
- Green: requirement; simple power law that keeps scatter noise low enough
 - Must extend to larger spatial scale because of 70cm diameter CE test masses

From Hall, Kuns+, PRD, 2021
Estimating CE Surface Roughness Requirements

- Backscattering estimates carried out by Yuntao Bai (Caltech) https://dcc.ligo.org/LIGO-T1900854

- surface roughness: mostly scattering to narrow angles (using green power law)
 - point defects: scattering to wide angles (using BRDF=1e-4 1/Sr)

From [Hall, Kuns+, PRD, 2021](#)
A+/CE Scatter Experiments

At Cal State Fullerton

- **In-situ scatter versus annealing**

 - Scatter versus annealing of (Ti):Ta2O5 in vacuum [Capote+, JOSAA] showed decreasing scatter to 500°C

 - Repeat and extend this work, but in air, using latest coatings and annealing prescriptions

 - Sentrotech oven purchased, electrical in lab being upgraded

MS Student Mike Rezac
At Cal State Fullerton

- **Scatter of silicon and coatings at 2um and 123K**
 - Would verify Zeno Tourasi’s (Glasgow) silicon scatter measurements (bulk scatter and surface scatter), but at new wavelength and temperature
 - Coordinating with Caltech (Chris Wipf) on samples
 - GM cryostat purchased from ColdEdge
 - 2um laser and cameras purchased
 - Extendable to birefringence (i.e. repeat [Krüger CQG 2016] at 2um, 123K

MS Student Alexandra Gruson
NOISE FROM BEAM CLIPPING AND DIFFRACTION AT BAFFLES
The Cosmic Explorer beam is much **larger** than 2nd generation beams.

Baffles clip a larger amount of the propagating field.

This might lead to:

- Changes in the shape of the cavity eigenmode
- Noise due to modulated diffraction due to baffle motion

How to address the problem?

- **Numerically difficult**: high dynamic range since the Gaussian tails are very small at the baffle edge
- **FFT propagation** is ideal for capturing the sharp edge of the baffles, but not great at the dynamic range
- **Modal approach** is numerically more stable with the dynamic range, but need very large number of modes
Work plan

1. Develop a model model of baffle clipping
2. Compute the cavity eigenmode with baffles (centered and with random lateral displacements)
3. Compute the effect of a lateral and longitudinal motion of each baffle on the circulating mode and compute phase and radiation pressure noise
4. Study the dependency on number of baffles
5. Derive some requirements on baffle seismic isolation
Modal model – Laguerre Gauss

- Clipping matrix for a centered baffle can be computed analytically in Laguerre Gauss basis.
- Precise and efficient implementation, allows the use of a very large number of modes

Clipping coefficients for a TEM00 mode, with modes order up to 150
Beam radius 69 mm, clipped at 30 mm

Report / paper in preparation for the analytical clipping model

We finally get the following closed-form, analytical expression for the coupling coefficient

\[C_{qm,pl} = \delta_{lm} \sqrt{q!p!(q + |l|)!(p + |l|)!} \sum_{j=0}^{\min(p,q)} \frac{p^{|l|+2j+2} q^{|l|+|p-q|} \Gamma(|l|+|p-q|+1)}{\Gamma(|l|+2j+2) \Gamma(|l|+|p-q|+1) \Gamma(|l|+2j+1)} (-p_B^2)^j \] (10)

This coupling matrix depends only on one parameter \(\rho_B = \frac{r_B \sqrt{2}}{w} \) that is the ratio of the baffle radius to the beam radius.
Modal model – miscentered baffles

• Move to Hermite-Gauss basis
 – Analytical base change matrix

• Translate beam basis and then use the centered clipping matrix
 – Analytical expressions for beam translation

J.-Y. Vinet, *Virgo Physics Book - Optics and related topics*,

• There are a lot of implementation details to make it work
 – Use arbitrary precision arithmetic
 – Use sparse matrix implementation
 – Use FFT-inspired accelerated convergence

Example result

- Cosmic Explorer cavity, 100 baffles equally spaced, radius 52 cm
- ITM T=1.4%, ETM T=5ppm
- No mirror maps, mirror radius 35 cm

Inner circle: test mass size
Outer circle: baffle size
Example result

- Cosmic Explorer cavity, 100 baffles equally spaced, radius 52 cm
- ITM T=1.4%, ETM T=5ppm
- No mirror maps, mirror radius 35 cm
Conclusions

• Mirror roughness
 – Computed for points and roughness
 – Points seem ok
 – Roughness requirement comparable PSDs for aLIGO for spatial scales < few cm
 – Must extend to 70-80cm diameter and larger spatial scale

• Noise from baffle clipping
 – Developed a modeling framework
 – Computed distortion of the intra-cavity fields due to the baffle clipping and diffraction
 – Noise and coupling to be computed