GWADW2021 (Gravitational Wave Advanced Detector Workshop)

Space GW Antennae: DECIGO/B-DECIGO

Masaki Ando (Univ. of Tokyo)

Outline

- Introduction
- DECIGO
- •B-DECIGO
- Summary

Introduction

- The first GW (and EM counter part) detections
 demonstrated new possibilities by GW astronomy.
 → More events, More precise parameter estimation.
- •As for BNS, we need more events, sky localization, higher SNR for astrophysics and nuclear physics.

- •Network of 2nd-gen. GW antennae (aLIGO, AdVIRGO, <u>KAGRA</u>, LIGO-India) is being formed.
- •Two ways after that for Astronomy and Cosmology:
 - 3rd-gen. ground-based GW antennae (ET, CE).
 - Space GW antennae (LISA, <u>DECIGO/B-DECIGO</u>, …).

DECIGO

Conceptual Design

DECIGO

'Window' for the Early Universe

DECIGO band is open window for direct observation of the early universe.

GW from Inflation

Energy density \propto Tensor-Scalar Ratio (r). Power spectrum : Evolution history of the Universe.

GWADW2021 (May 17th, 2021, Online)

Roadmap for DECIGO

B-DECIGO

Space GW Observatory: B-DECIGO

≈ Renamed in 2016: Pre-DECIGO \rightarrow B-DECIGO

•B-DECIGO

- Space-borne GW antenna formed by three S/C
- Target Sensitivity for GW : 2×10^{-23} Hz^{-1/2} at 0.1Hz.

Sciences of B-DECIGO (1) Compact binaries. (2) IMBH merger. (3) Info. of foregrounds for DECIGO.

Fig. by S.Sato

Target: JAXA Strategic Medium-scale mission (~2030).

B-DECIGO Design (Preliminary)

Sensitivity Curves

Sciences by B-DECIGO

(1) Inspiral of Compact binaries ['Promised' target] - High rate $\sim 10^5$ binaries/yr. - Estimation of binary parameters and merger time. \rightarrow Astronomy by GW and GW-EM observations. (2) Inspirals and mergers of IMBHs [Original science] - Cover most of the universe. \rightarrow Formation history of SMBH and galaxies. (3) Foreground understandings for DECIGO [Cosmology] - Parameter estimation and subtraction of binaries.

- Characteristics of foreground.
- Is the any eccentric binaries?

Observable Range

$30M_{\odot}$ BBH Merger : 100 Gpc (z~10) range with SNR~8 (optimal direction/polarization).

Parameter Estimation Accuracy

T. Nakamura et al., Prog. Theor. Exp. Phys. 093E01 (2016)

B-DECIGO Sciences for CBC

With its <u>BBH</u> observable range, in B-DECIGO
 Detection Rate will be ~ 4 × 10⁴ − 10⁶ events/yr .
 → Possible to identify the origin of BBH

(Pop-III, Pop-I/II, or Primordial BH).

- •Range for <u>BNS</u> is ~2Gpc \rightarrow ~ 100 events/yr .
- •With low-freq. GW observations, longer observation <u>time</u> is expected; in $30M_{\odot}$ BBH merger case, the signal is at 0.1Hz in 15days before merger.
 - \rightarrow Improved parameter estimation accuracy

with lager cycle number ($\sim 10^5$) :

- * Localization, Merger time \rightarrow <u>Alerts for GW-EM</u>.
- * Mass, Distance, Spin \rightarrow Origin and nature of binaries.

Sciences by B-DECIGO

(1) Inspiral of Compact binaries ['Promised' target] - High rate $\sim 10^5$ binaries/yr. - Estimation of binary parameters and merger time. \rightarrow Astronomy by GW and GW-EM observations. (2) Inspirals and mergers of IMBHs [Original science] - Cover most of the universe. \rightarrow Formation history of SMBH and galaxies. Foreground understandings for DECIGO [Cosmology] - Parameter estimation and subtraction of binaries. - Characteristics of foreground.

- Is the any eccentric binaries?

Target (3) : Foreground Understandings

Estimated Noise Sources

Technical Challenges

- •Long-baseline Interferometry (Disp. <1x10⁻¹⁸ m/Hz^{1/2})
 - Optical configuration for IFO, and laser source.
 - 100km Fabry-Perot cavity (Large RoC, Distortion).
 - Initial acquisition.
- Force Noise (Force noise $<1 \times 10^{-16} \text{ N/Hz}^{1/2}$)
 - Gravity, EM force, Residual gas, thermal radiation, Cosmic ray, control noise, etc..
- Satellite control
 - Drag-free, Low-noise thruster, Signal processing.
- Mission Design
 - Orbital Design, Initial Mission sequence.
 - Resource distribution, Launcher, Cost estimation.

B-DECIGO Study

B-DECIGO System Design

- \rightarrow Feasibility study by a company
- Mass, Power, Thermal, Communication, Launch/Orbit, S/C control, S/C design,…
 - \rightarrow <u>Confirmation of feasibility</u> (Preliminary)

[S/C mass ~430kg, power ~450 W]

- Cost estimation
 - \rightarrow Possibility to be within JAXA mission's cost cap.

B-DECIGO R&D

Technical Survey as the first step of trade-off studies.

カテゴリ	番号	サーベイ項目
1	1	干渉計方式, 制御トポロジー
1	2	光学系実装
1	3	光学設計
2	1	レーザー光源
2	2	光源安定化方式
3	1	鏡・テストマスモジュール
3	2	ローカルセンサ・アクチュエータ
3	3	带電除去
3	4	ローンチロック・クランプリリース
3	5	真空系・脱ガス対策
3	6	熱変動・勾配・温度安定化
4	1	ドラッグフリー・衛星変動抑圧
4	2	スラスタ
5	1	電気-光学コンポーネント
5	2	変復調・位相検波回路
5	3	デジタル/アナログIF (ADC/DAC)
5	3	制御系実装
6	1	初期捕捉方式
6	2	展開
6	3	リンクアクイジション
6	4	共振器ロックアクイジション
6		姿勢制御方式・コンポーネント
7	1	軌道選択
8	1	衛星取り付け・輸送方式
9	1	熱設計
10	1	システム設計
11	1	運用方式・地上とのデータ通信・衛星間通信
12	1	衛星地上試験・検証
13		冗長性の考え方、宇宙コンポーネントの知識
14		重力波検出器としての絶対キャリブレーション方法の検討

 <u>Space demonstration</u> in cooperation with the Formation-Flight Working Group of JAXA aerospace engineering committee. → SILVIA (Space Interferometer Laboratory Voyaging towards Innovative Applications) Was selected as Pre-Phase A1b by JAXA/ISAS in FY2019.

「2019年度公募型小型計画・宇宙科学ミッションコンセプト提案」の結果について

2019年10月10日に公募を開始した「2019年度公募型小型計 画・宇宙科学ミッションコンセプト提案」は、2020年2月5日 の締切までに7件の応募がありました。宇宙科学研究所は提案 の評価を宇宙理学委員会と宇宙工学委員会に依頼し、2つの委 員会は合同で「公募型小型・評価審査小委員会」を設置しました。

会では、応募のあった全テーマについて2020年3月に一次ヒー 審査) を実施していく予定です。その後本提案は、公募型小型 アリングを行った後、4テーマについて2020年5月に二次ヒア 計画5号機あるいは6号機の候補の一つとして活動していくこ リングを実施し、最終的に1テーマを選定しました。小委員会とになります。 の選定結果は2020年8月3日の臨時宇宙理工学合同委員会に報 告され、そこでの審議を経て承認されました。

天体観測手法である宇宙干渉計の実現に必須となる、超高精 に深く感謝いたします。 度フォーメーションフライト技術とドラッグフリー技術の軌

道上実証を行い、将来の重力波望遠鏡や赤外線干渉計等の ミッション実現に向けた技術を獲得することを目指すSILVIA (Space Interferometer Laboratory Voyaging towards Innovative Applications) 計画の1件であります。

今後、この提案に対してアイデア実現加速プロセス(Pre-宇宙科学プログラム室は、希望のあったワーキンググループ PhaseA1b)を実施し、適切な時期にミッション定義フェーズ に対し、提案書作成に向けた調整、支援を行いました。小委員 (Pre-Phase A2)に進むための審査(プリプロジェクト候補選定

公募型小型・評価審査小委員会および木村 真一委員長には、 大変な労力をかけて厳正なる審査をしていただきました。小委 次のフェーズに進むことのできる提案は、新時代の高精度 員会委員および小委員会から評価を委託された外部委員の皆様

(佐藤英一)

TISAS News1 2020.8 http://www.isas.jaxa.jp/outreach/isas_news/files/ISASnews473.pdf

Developments

- Developments in
- Interferometer prototype
- Laser source and stabilization
- Drag-free control
- Thruster test
- Formation flight simulation
- •Related presentation:

#57 (Poster presentation)

'Demonstration of a dual-pass differential Fabry–Perot interferometer for future interferometric space gravitational wave antennas: DECIGO and B-DECIGO'

by Koji Nagano

Roadmap

Summary

Summary

- First direct detection of GW was achieved by LIGO 100 years after the theoretical prediction by A. Einstein by General Relativity.
- •It opens the new field of 'Gravitational-wave astronomy'. We obtained a new prove to understand the universe.
- •The field will be expanded by antennae with better sensitivity, and with different frequencies.
- •B-DECIGO will provide fruitful sciences. Future DECIGO will be one of the dream of science; it will be able to observe the early universe directly.

End

Back-Up Slides

Transponder type vs Direct-reflection typeCompare : Sensitivity curves and Expected SciencesDecisive factor: Binary confusion noise

Arm length

Cavity arm length : Limited by diffraction loss

Effective reflectivity (TEM₀₀ \rightarrow TEM₀₀) Laser wavelength : 532nm Mirror diameter: 1m Optimal beam size

1000 km is almost max.

GWADW2021 (May 17th, 2021, Online)

Trade-off Study for Descope

What happens if we degrade the target sensitivity.

Low-freq. noise (Acc. noise) \rightarrow Degrade overall range. High-freq. noise (Shot noise) \rightarrow Degrade for lighter mass.

Parameter Estimation Accuracy

Fig. 11 Time evolution for (a) SNR and (b) angular resolution of GWs from $30M_{\odot}$ equalmass BH binaries at the distance of z = 0.1. We assume $\alpha = \delta = 1.0$ rad, $\psi = 0.5$ rad, and $\cos \iota = 0.5$.

T. Nakamura et al., Prog. Theor. Exp. Phys. 093E01 (2016)

Sensitivity Curves

Displacement Noise Shot noise $1 \times 10^{-18} \text{ m/Hz}^{1/2}$ (0.1 Hz) $\Rightarrow \sim \times 10$ of KAGRA in phase noise

Other noises should be well below the shot noise Laser freq. noise: $1 \text{ Hz/Hz}^{1/2}$ (1Hz) Stab. Gain 10⁵, CMRR 10⁵

Force (Acceleration) Noise Force noise $1 \times 10^{-16} \text{ N/Hz}^{1/2}$ (0.1 Hz) $\swarrow \times 1/60 \text{ of LISA}$

External force sources Fluctuation of magnetic field, electric field, gravitational field, temperature, pressure, etc.

Basic Requirements

Force Noise Requirements (1)

	DPF	B-DECIGO
Magnetic noise		
Magnetic fluctuation, $\delta B [T/rtHz]$	1e-7	2e-8
Magnetic gradient, B' [T/m]	3e-6	1e-8
Residual gas thermal		
Pressure [Pa]	1e-6	1e-9
Solar radiation pressure noise		
Solar radiation fluctuation [N/rtHz]	4e-10	4e-10
Local sensor sensitivity [m/rtHz]	1e-10	1e-13
Thruster noise, Fth [N/rtHz]	1e-7	1e-7
Coupling, α [1/s^2]	1e-6	1e-6
Actuator noise		
Actuator noise, Fact [N/rtHz]	1e-15	1e-17
jano (2019)		

Force Noise Requirements (2)

	DPF	B-DECIGO
Thermal radiation fluctuation		
Temperature fluctuation, $\delta T [K/rtHz]$	1e-3	1e-6
Common mode rejection	1e-3	1
Shield	1	1e-2
Frequency noise		
Frequency noise [Hz/rtHz]	0.5	1
Control gain	?	3e8
Thermal noise		
Substrate loss angle		1e-7
Costing loss angle (SiO ₂ , Ta ₂ O ₅)		0.5e-4, 2e-4
Beam radius [cm]		14

K.Nagano (2019)

Formation Flight

 Formation flight is achieved by 2 steps.
 * TM-TM: Length measurement and control by the laser interferometer.

* TM-S/C: Control by local sensor and thruster

Displacement Signal between S/C and Mirror

Formation Flight Requirements

- •TM (mirror): untouched from S/C for reduction of FN.
- •Laser interferometer ranging. $< 1 \times 10^{-18} \text{ m/Hz}^{1/2}$ (0.1Hz) Length accuracy < 0.5%
- Force noise from S/C motion.
 - Drag-free (Control S/C to follow TM)
 - < 2x10⁻¹¹ m/Hz^{1/2} (0.1Hz)
 - Coupling between S/C-TM < 5×10^{-8} /s²
- Initial acquisition.
 - High-dynamic range scanning to find relative position.
 - Switch to the final now-noise sensor/actuator.

Drag-Free Requirements

Drag-Free Control: Suppress in-band S/C motion.

- Keep the relative position within linear range of the local sensor/actuator.

TM-S/C RMS motion < 0.1mm

- Signal communication between Bus Mission comp.
- Drag-free: Gain > \sim 40 (0.1Hz), Band > \sim 10Hz
- Low-noise thruster: Suppress solar radiation noise.
 - Max force > $100 \mu N$ (tunable force)
 - Thrust noise < 10^{-7} N/Hz^{1/2} (100Hz)
- •Selection of the orbit:
 - Tidal force on TM \Leftrightarrow Range of control actuator.
 - Trade-off with Duty factor, Mission lifetime.

•3 steps for Initial lock acquisition:
(1) Launch and introduction to the reference orbit, by S/C tracking from the earth.
(2) Find the laser beam from each other, by on-board instruments.

- Accuracy : ~10cm mirror diameter, 100km separation \rightarrow 10⁻⁶ rad is required.
- Reasonable scanning time <~hours.
- (3) Fine alignment using the main beam.
 - Length sensing by the main FP interferometer.
 - Wave front sensing by the main beam.

Initial Acquisition of GRACE-FO

Laser Ranging Interferometer (LRI) of GRACE-FO

- Baseline length ~250km, Mirror diameter ~3cm
- Scan the beam by a steering mirror.
- \rightarrow Initial acquisition was achieved by 9-hour scan.

G.Heinzel (KIW6, June, 2019)

Idea of Initial Acquisition

Idea to use beam scan by AOD (Acousto-optic deflector)

- Good spatial resolution.
- Quick scanning without mechanical actuator.
- Less affected by laser frequency and intensity drift.
- 100mW laser source, 3sec for 1km scan.

B-DECIGO Orbit

\cdot Selection of orbit

- Low relative acceleration for free-falling TM.
- Stable orbit even without length control.
- Trade-off with launch cost and tele-communication.

Numerical Simulation on Orbit (1)

10³

102

10¹

10⁰

 10^{-1}

10

10

10

 10^{-5}

- Earth Orbit (2,000km)
 - Thermal step
 - Orbital period ~2hour
 - Length change $\sim 5 \times 10^{-3}$
- Earth Orbit (36,000km)
 - Thermal step
 - Orbital period :24hour
 - Length change $\sim 7 \times 10^{-4}$
- •<u>Solar Orbit</u> (LISA-like)
 - Thermally stable
 - Radius: 1AU
 - Orbital period: 1yr
 - Length change $\sim 2 \times 10^{-6}$

Figure by S.Sato Earth Orbit Dawn-Dusk

- Record-Disk

- 2,000km,

(Sun synchronous)

350

Numerical Simulation on Orbit (2)

Figure by S.Sato

- •Earth Orbit (2,000km)
 - Dawn-Dusk
 (Sun synchronous)
 No thermal step
 - Record-Disk
 - Length change $\sim 2 \times 10^2$
- •<u>Lagrange Point</u>
 - No thermal step
 - Orbital period ~2hour
 - Length change

 $\sim 2 \times 10^2$ - $\sim 5 \times 10^{-1}$

B-DECIGO Data Analysis

- •Challenges in data analysis of B-DECIGO:
 - * Separation of many signals.
 Signal rate ~10⁵ /yr → 1 event/5min.
 Basically, it is possible to separate them, by identifying and subtracting the waveform one by one from the largest SNR signals.
 - * <u>Computational power</u>.

Orbital motion of B-DECIGO \rightarrow signal modulation.

- Critical for sky localization by single IFO unit.
- May be a challenge in data analysis.
- * <u>Low-latency data processing and analysis</u>. Data-processing strategy to send alerts of mergers.

Foreground Cleaning

Preliminary demonstration of data analysis

Inject ~ 10^5 NS binary waveform to simulated DECIGO noise.

> Demonstration of identification and subtraction from largest signals

Successful. However, found that high parameter estimation accuracy is required $\rightarrow \Delta m/m < \sim 10^{-7}$ %

Space GW Antennae

