

Local readout at gravitational wave detectors

- gravitational wave detectors are currently limited by seismic & technical noise at low frequencies
- pendulum suspension (passive) and actuators (active) mitigates seismic noise on the mirror suspensions of GWD

Figure: Sensitivity difference of current GW-detectors (LIGO & Virgo) and the proposed Einstein-Teleskope. Source: Conor Mow-Lowry

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Deep-Frequency Modulated Interferometry (DFMI)

 Multi-fringe readout with simple optical setup using frequency modulated laser

$$P_{ ext{out}}(t) = P_0 \sin(\omega_{ ext{DFM}} \cdot t)$$

$$\omega_{\mathsf{DFM}} = \omega_0 + \Delta \omega \cdot \sin(\omega_m t_0 + \psi)$$

Source: Gerberding & Isleif 2021

• precision of down to $10^{-14} m / \sqrt{Hz}$

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Fundamental readout limits

- Cramer-Rao Lower Bound (CRLB) given by

- Fisher-information
- $\rho ~~$ probability density function of the (noisy) measured signal
- var variance
- X measured signal
- heta ~~ real phase $\hat{ heta}~~$ readout / phase estimate
- E expectation value

∜

DFM-Readout Algorithm

The measured signal:

$$P_{\text{measured}}(t) \approx P_0 \sin(m \cdot \sin(\omega_m t + \psi) + \varphi) \implies \widetilde{P}_{\text{measured}}(\omega) \approx P_0 \sum_{n \in \mathbb{Z}} J_n(m) e^{i(n\psi + \varphi)} \delta(\omega - n\omega_m)$$

Parameter of interest: (φ, m, ψ, P_0)

 \implies use analytical relations between coefficient (Bessel functions)

$$J_{n-1}(m) + J_{n+1}(m) = \frac{2n}{m} J_n(m)$$

example power spectral density of DFM signal

- faster algorithm
- near optimal precision
- no need for starting values (opposed to fit)

Figure: Runtime of the algorithm specific parts (excluding time to input data etc.) for different time-series lengths. Sampled with a samling frequency of $f_{\rm S}=10 {\rm kHz}$, 10^3 datapoints correspond to a readout frequency of $f_{\rm R}=0.1 {\rm Hz}$ and 10^6 datapoints to $f_{\rm R}=10 {\rm Hz}$.

Figure: Plot of a sample algorithm readout (blue) and the theoretically archivable minimum given by the CRLB (red).