

SiN films:

Characterization workflow and examples from analysis

work-in-progress report

Michele Magnozzi for the Virgo Coating R&D Collaboration

GWADW 2021

17/05/2021

The scientific case

- Silicon Nitride coatings
 - Losses are about 3 times lower than present Ta_2O_5 -TiO₂ coatings
 - Can be annealed up to 900 °C without crystallization
 - Optical absorption is relatively high and has to be reduced

Table 2. **Tentative Projection of Requirements for Optical and Mechanical Properties of Coating Layers** for Future GW Interferometers, Based on Current Standarde (from Date [1 30] and This Work)

Optical and Mechanical Projection for Future GW Interferometer Standards (from Refs. [4,30]	Optical and Mechanical Properties of Coating Layers for Future GW Interferometers, Based on Current Standards (from Refs. [4,30] and This Work)		
Refractive Index Extinction Scattering Internal friction	$n_{H} > 2.09$ $n_{L} < 1.45$ $10^{-7} < k < 10^{-6}$ $\alpha_{s} \le 10 \text{ ppm}$ $\phi_{c} < 10^{-4} \text{ at } 100 \text{ Hz}$	tinction coef	
Coated diameter Thickness uniformity Surface roughness	$d \ge 35 \text{ cm}$ $\Delta t_c \le 0.1\%$ $\le 0.1 \text{ nm rms}$	$\stackrel{\text{ff}}{=} 10^{-6} \begin{array}{c} 10^{-6} \\ 0 \end{array}$	500 $T_a \ [^{\circ}C]$
Michele Magnozzi	GWADW	/ 2021	

Challenge: *increase* n, *decrease* k

₫

1,000

0

M. Granata et al., Appl. Opt. 59 (2020) https://doi.org/10.1364/AO.377293

 10^{-4}

Origin of absorption

- Factors affecting the optical absorption & refractive index
 - Stoichiometry (S/N ratio)
 - Oxygen
 - Hydrogen
 - Contaminants
 - Coating (in)homogeneity
 - Density

Example: silicon-rich SiNx films have higher absorption [Paule et al., Vacuum 37:395, 1987]

• Characterization is required to track ALL the above factors, so that they can be optimized during the next fabrication campaign

Literature studies help (only up to a certain point...)

Tracking the factors affecting absorption

Optical properties		Chemical/compositional properties			Morphological/structural properties			
Quantity	Technique	Group	Quantity	Technique	Group	Quantity	Technique	Group
n	Spectrophotom. Ellipsometry	LMA Genova	Stoichiometry, H content,	EDX Perugia XPS Roma1 "Genova Raman g-MAG	Thickness	Spectroph. Ellipsom.	LMA Genova	
k	Spectrophotom.	LMA "	O content, Contaminants		Genova g-MAG g-MAG	Surface analysis	SEM AFM	Perugia "
Ellipsometry Genova	Genova		FTIR Pado	Padova	Density, roughness	XRR	Padova	
gradient	Spectrophotom. Ellipsometry	LMA Genova		SIMS ERDA	" SAFIR/	Cryst. content	GIXRD	"
				RBS	Navier			

The results from the characterization are evaluated and discussed by considering the theory describing the amorphous coatings (Navier)

> NOTE: concerning the thermo-optic effect in SiNx coatings, see the poster by *Matteo Bischi* on 20 May

So far: **4 batches of SiN films** have been produced by LMA and distributed to VCR&D for characterization. Other samples will be available soon.

EDX data and analysis (**Perugia**)

XPS data before and after sputtering (Roma1)

Note: O content decreases as depth is increased

Michele Magnozzi

Compositional analysis across the coating with SIMS (**Padova**)

H content and vertical gradient measured with ERDA (**SAFIR/Navier**)

Michele Magnozzi

GWADW 2021

17/05/2021

Presence of Oxygen evaluated by FTIR (Padova)

- Dominating band between 800 and 1200 cm⁻¹ is attributed to the group of Si-N and Si-O bonds.
- The main peak position shifts to larger wavenumbers by increasing the O content as the predominant bond type passes from the Si-N stretching to the Si-O stretching.
- Sample S21001 is richer in oxygen.

Michele Magnozzi

SiN composition measured with RBS (Padova, previous batch)

After background subtraction: Si = 1.40e17 atoms/cm2 O = 1.44e17 atoms/cm2 N = 1.20e17 atoms/cm2 From these data one can obtain the corresponding atomic ratios: N/Si=0.86 O/Si=1.03

1.94 415 nm

Michele Magnozzi

Michele Magnozzi

- An **intensive**, **cooperative effort** is ongoing to provide a comprehensive characterization of the **optical**, **chemical**, **morphological/structural properties** of the SiN films produced by LMA
- 4 SiN batches produced and characterized so far; the "performances" of the films have been continuously improved thanks to optimizations in the fabrication process and feedback provided by characterization. Examples of negative factors that have been significantly reduced:
 - water content
 - vertical inhomogeneity
- New samples will be ready soon; the collaboration is ready to characterize them
- Best results so far on SiNx films and perspectives: see next talk by Massimo Granata