Temperature Dependent Mechanical Loss Measurements of TiO,-doped GeO, thin films

S. Khadka, A. Markosyan, A. Dana, R. Bassiri, M.M. Fejer, **Center for Coating Research (CCR), Stanford University.** L. Yang, and C. Menoni, Colorado State University. I. Martin, University of Glasgow.

GWADW May 2021

Motivation

<u>TiO₂- doped GeO₂ is being studied as a prospective coating for A+</u>

- 4 Atomic structure studies showed that GeO₂-based coatings could have low RT loss (Phys. Rev. Lett. 123, 045501); TiO₂-doped GeO₂ coating emerged as possible coating solution for A+
- \therefore Latest RT loss measurements/ thermal noise estimates of TiO₂-doped GeO₂ are encouraging (See Vajente et. al, P2100075)
- Room for further improvement

Temperature dependence of mechanical loss is important

- Helps design a better RT coating by elucidating the underlying loss mechanisms, two level system (TLS) distributions etc.
- Informs future coating designs for cryogenic detectors

Mechanical loss measurement setup

Resonator used for loss measurement

Extracting mechanical loss of coatings using ringdown of a DPO

For AS2 Mode (2nd Anti-Symmetric) Torsional mode

$$\varphi_{coating} = \frac{G_s t_s}{3G_c t_c} (\varphi_{coated} - \varphi_{uncod})$$

 G_s = shear modulus of substrate (Si)

 G_c = shear modulus of coating

 t_s = thickness of substrate (Si)

 t_c = thickness of coating

Mechanical loss of as-deposited TiO₂-GeO₂ (295K - 80K)

Coating loss of as-deposited TiO₂-GeO₂ films

Mechanical loss of as-deposited TiO₂-GeO₂ (295K - 80K)

300

6

10 87		Samples	As-	Loss at	Loss
			deposited	295K	80ł
			coatings		
		DPO406	Pure	6.12e ⁻⁵	9.95
	_		GeO ₂		
		DPO402	Ti-GeO ₂	1.43e -4	7.16
			(6%)		
		DPO206	Ti-GeO ₂	2.35e ⁻⁴	3.81
			(44%)		

Mechanical loss of as-deposited TiO₂-GeO₂ (295K - 80K)

Coating loss of as-deposited TiO₂-GeO₂ films

Mechanical loss of as-deposited TiO₂-GeO₂ (295K - 10K)Coating loss of as-deposited Ti-GeO₂ thin films down to 10K 1.2x10⁻³ -■— Pure GeO2 DPO406 B10 1.0x10⁻³ Pure GeO2 DPO406 B10 Ti-GeO2 (6%) DPO402 B10 9.0×10^{-4} - Ti-GeO2 (44%) DPO206 B7 **OSS** - b 6.0x10⁻⁴ 4.0x10⁻⁴ 2.0x10⁻⁴ `B. _ .B- _ 100 200 250 300 150 Temperature (K) 50 200 250 100 150 8 Temperature (K) DF: 202105 He-Cycle

Coating loss of As-deposited TiO₂-GeO₂ films

Loss curves of Bulk a-GeO₂ and Thin film of a-GeO₂

Ref¹: Phys. Rev.B 52, 7179 (1995).

Bulk Vs Thin film loss behavior of $a-SiO_2$ and $a-GeO_2$

Ref²: I W Martin et al 2014 Class. Quantum Grav. 31 035019

10

Tridents: Micro-resonators for frequency dependent loss measurements of optical coatings

1 Chip with 3 Tridents

L=15 mm

T = 130 mm

Tridents: Micro-resonators for frequency dependent loss measurements of optical coatings

Summary

Temperature dependent loss measurements of GeO2 and Ti-GeO2 using DPOs.

- 1. For all IBS films studied in this work, cryogenic loss is found to be higher than RT loss.
- 2. Unlike the RT loss, cryogenic loss of thin film GeO₂ is lower than that of bulk GeO₂ (from literature).
- 3. RT loss is seen to increase with Ti concentration.
- \blacktriangleright Frequency dependent mechanical loss measurements using Tridents.

for its applicability in the frequency dependent loss measurements of the optical coatings.

Future works.

using DPOs.

2. Start the frequency dependent measurements using the Tridents from Phase3.

1. Temperature dependent Mechanical loss of the current Trident shows encouraging behavior

- 1. Continue the ongoing measurements as a function of Ti-concentration and annealing temperature
- 3. Atomic structure measurements and modelling of Ti-GeO₂ are on-going (Stanford U., U. of Florida, and Sungkyunkwan U.) hence a more unified picture of atomic scale loss mechanisms could emerge. 13

Acknowledgments

- Matthew Abernathy, previously at NRL.
- Tom Metcalf, NRL. Washington.
- Simon Tait, University of Glasgow.

