Optical-parametric signal-amplification for a high-frequency gravitational-wave detector

Department of physics, Tokyo Institute of Technology, Japan

Ken-ichi Harada

Collaborators
Department of physics, Tokyo Institute of Technology, Japan
Sotatsu Otabe, Kaido Suzuki, Kentaro Somiya

2021. 5. 17 – 21, GWADW2021
Outline

Introduction

Optical spring
Optical parametric amplification (OPA)

Experimental setup at Tokyo Tech.
Signal recycling Michelson interferometer with OPA

Result

Summary
The gravitational wave (GW) sources in a few kHz bands

binary neutron star merger, supernova, ….

The high-frequency signal cannot be detected by current GW detectors because of sensitivity degradation due to shot noise.

By improving the sensitivity in the kHz band, we significantly boost our understanding of the universe.

For improving the detection sensitivity,

• Squeezed vacuum: Reduce the noise of the sensitivity.
• Optical spring and Optical parametric amplification: Amplify the signal
Optical spring

For improving the detection sensitivity in a high-frequency band,

Optical spring (OS): Induced by the interaction between electromagnetic radiation and mechanical motion.

The mirror is pushed back to the initial position by radiation pressure.

The mirror is returned to the initial position by mechanical force.

OS can modify the dynamics of MI.

The resonance frequency of OS becomes high by the increase of the radiation pressure.
Optical parametric amplification (OPA)

Amplify the signal intensity.
Convert the wavelength of the light.

A intense pump light and a weak signal light (or without signal) are injected into NLC.

Intracavity OPA

The optical spring becomes stiff.
The resonance frequency of OS is adjusted by detuned phase and pump power.
Sensitivity estimation

Sensitivity of signal recycling Michelson interferometer (SRMI) with OPA

The detuned phase of SRC

OS generates.

OPA

The resonance frequency of OS is high.

When the pump power is high, the optical spring frequency becomes high.
Experimental setup

Laser sources

1064 nm
Laser source

\(\lambda/2\): Half-wave plate
EOM: Electro-optic modulator
FC: Fiber coupler
PBS: Polarizing beam splitter

Output power after the fiber amp.
Experimental setup

Michelson interferometer (MI)

Piezo1: Stabilize the MI system

\(\lambda/2\): Half-wave plate
EOM: Electro-optic modulator
FC: Fiber coupler
PBS: Polarizing beam splitter
BS: Beam splitter
PD: Photodetector

Suspended mirror

Diameter: 6 mm
Weight: 0.2 g
Resonant frequency: 11 Hz
Mount made of polyester
Experimental setup

Signal recycling cavity (SRC)

Piezo1: Stabilize the MI system

Piezo2: Stabilize SRC by using the subcarrier 1 light

The frequency-shifted by the double-pass configuration of AOM.

\[\omega_{\text{AOM}} = 40 \text{ MHz} \]

The frequency-shifted light is leaked from AS port because of the asymmetry of arm lengths of MI.

- **Carrier frequency**
 \[\omega_{\text{sub1}} = 2 \omega_{\text{AOM}} \]

Diagram Notes

- EOM: Electro-optic modulator
- AOM: Acousto-optic modulator
- FC: Fiber coupler
- λ/2: Half-wave plate
- λ/4: Quarter-wave plate
- BS: Beam splitter
- PBS: Polarizing beam splitter
- PD: Photodetector
- SRM: Signal recycling mirror
Experimental setup

Second harmonic generation (SHG)

Bow-tie cavity: Generate 532 nm light by SHG.
Stabilized by the Pound-Drever-Hall (PDH) method.

PPKTP: Periodically Poled KTiOPO4 (1 × 2 × 10 mm)
Temperature controlled by an oven
Transmission loss of the crystal: 1%
Maximum output pump power (532 nm): 500 mW
Result

Observation of the signal amplification of the 1064 nm light

Carrier power (1064 nm): 30 mW
Pump power (532 nm): 450 mW

We confirmed the signal amplification by OPA.

(Change of the relative phase by piezo 3.)

Leakage of the carrier light from MI by changing the offset
Subcarrier 2

Subcarrier 2: Stabilize the relative phase between the carrier and pump. Employ the coherent control (CC) method reported in Phys. Rev. Lett. 97, 011101 (2006).

Subcarrier 2 ($\omega + \omega_{\text{sub2}}$)

The frequency is identical to subcarrier 1.

$$\omega_{\text{sub2}} = \omega_{\text{sub1}} = 2\omega_{\text{AOM}}$$

The polarization is the identical to the carrier light.

The frequency-shifted light is leaked from AS port because of the asymmetry of arm lengths of MI.

The beat signal between $\omega + \omega_{\text{sub2}}$ and $\omega - \omega_{\text{sub2}}$ generates by OPA.

The error signal I_{err} can be obtained by demodulating $2 \times \omega_{\text{sub2}}$.

$$I_{\text{err}} \propto \sin \theta \quad \theta: \text{relative phase}$$
Subcarrier 2

Observation of OPA by subcarrier 2

Subcarrier 2 power (1064 nm): 8 mW
Pump power (532 nm): 450 mW

We obtained the error signal using the subcarrier 2.
Summary

Observed OPA in SRMI.

Obtained the error signal using subcarrier 2.

Future plans

Improvement of the OPA signal

Observation of the frequency shift of OS by OPA

Thank you for your attention!