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Seismic and Newtonian noise estimate at Terziet- 
the Euregio Meuse-Rhine candidate site for Einstein Telescope 



Measurements overview 

 

Surface seismic array: 

• Phase velocity, Rayleigh-wave modes 

• Direction of propagation 

 

Borehole studies 

 

1D S-wave subsurface model 

 

Underground seismic noise 

• H-V ratio, Rayleigh ellipticity 

• Attenuation 

• Body-wave background 

 

Newtonian-noise estimation 

• Surface sources 

• Background body waves 

Contents 
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All work reported here are based on: 

• Phd Thesis S. Koley, VU Amsterdam 

• Phd Thesis M. Bader, VU Amsterdam 

https://research.vu.nl/en/publications/sensor-networks-to-measure-environmental-noise-at-gravitational-w
https://research.vu.nl/en/publications/seismic-and-newtonian-noise-modeling-for-advanced-virgo-and-einst


Studies of quality at potential Euregio Meusse-Rhine (EMR) site 
The geology of the EMR Limburg border area: hard rock with on top a layer of soft absorbing 

and damping soil 

Gamma ray 
Lithology 

model 
GWADW, May 17, 2021 3 

D
e

p
th

 (
m

) 



Spatial sampling of seismic waves used to determine: wave types, velocity,  direction of 

propagation 

 

Surface seismic array– Nov. 4 – 28, 2017 
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Array features 

• Two circular arrays, each comprising 49 and 25 vertical component geophones were deployed in the vicinity of a 250 m deep 

borehole at Terziet  

• Array A and B have maximum apertures of 512 m and 112 m and are sensitive to surface waves in the band 2.4 -14.0 Hz 

and 3.4 – 14.0 Hz, respectively 

• Surface seismic noise in the anthropogenic band (> 2 Hz) shows typical diurnal variation of an order of magnitude in power 



Beamforming results show the dominant seismic wave propagation in the form of Rayleigh 

waves and higher-order modes 

Beamforming output 
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Spatial-filtering 

• Beamforming decomposes the seismic wavefield into a set of plane waves which are characterized by their slowness 

(𝑝 = 1/𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) and direction (𝜙) 

• Array A is sensitive in the band 2.4 – 14.0 Hz, due to spatial aliasing at frequencies > 14 Hz (Nyquist) 

• Generation of higher order modes can be attributed to: geology at the site, source mechanism 

• Anisotropic illumination at low frequencies. Source distribution tend to be isotropic at high frequencies 



Beside the fundamental mode, both arrays show the existence of higher-order modes 

Rayleigh-wave dispersion 
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Wavefield composition 

• Higher-order modes are important for understanding composition of the surface and underground wavefields 

• Higher-order modes are more sensitive to deeper subsurface layer velocities compared to the fundamental 

• The dispersion curves obtained for Array A and B, point to lateral inhomogeneity in the shallow subsurface geology 



Underground seismic noise reduces upto a factor 104 in power 

 

Underground seismic noise 
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Noise attributes 

• We characterize the underground and the surface seismic environment for a period between Nov. 2019 to Oct. 2020 

• STS-5A seismometer stationed at a depth of 250 m and a Trillium-240 seismometer on the surface 

• Surface seismic noise peaks at 4 Hz and 9 Hz in the horizontal and vertical component, respectively 

• The attenuation (PSDsurface/PSDunderground) at high frequencies can be attributed to body waves 
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A horizontal-vertical spectral ratio (HVSR) peak of about 8 is observed at 4 Hz implying a 

sharp contrast in velocity at shallow depths 

HVSR and Rayleigh ellipticity 
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HVSR vs Rayleigh-ellipticity 

• HVSR and Rayleigh wave ellipticity are additional constraints for wavefield modeling 

• HVSR gives us an estimate of ratio of (Rayleigh + Love+SH) and (vertical-Rayleigh+P+SV) 

• Radial component of Rayleigh waves dominate on the horizontal seismic - 1-3 Hz and 5-7.5 Hz (first overtone of 

Rayleigh) 

• The second peak in the Rayleigh-wave ellipticity at about 7.2 Hz could be due to the ellipticity peak of the first overtone 

of the Rayleigh wave 
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Resistivity, gamma ray, and sonic logging was performed to get apriori subsurface 

information which is necessary for setting the constraints for subsurface model estimation 

Apriori subsurface information 
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Soft-soil over hard-rock geology 

• P-wave velocities higher than 4 km/s are observed for depths > 40 m 



A first transition from soft-soil to hard-rock is observed at depths between 15-20 m and P-wave 

velocities in excess of 4 km/s are observed 

S-wave velocity model 
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Subsurface modeling 

• Fundamental and first overtone phase 

velocities are used for subsurface model 

estimation 

• Besides, the Rayleigh-wave ellipticity is also 

used to constrain the subsurface model 

estimation  

• This helps in estimating a deeper 

subsurface model since the ellipticity 

information is available down to 1 Hz 



Fundamental and higher-order modes of Rayleigh and Love waves are required to 

understand the observed horizontal and vertical spectral attenuation 

Surface and body-wave contribution – Eigenfunctions 
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Vertical component: 

• Rayleigh fundamental: < 2 Hz; first overtone: 2.5 – 5 Hz; 5- 8 Hz: mixing of body wave and second overtone of Rayleigh 

waves; >8 Hz: dominated by P-waves (local sources + background) 

Horizontal component: 

• Love Fundamental: < 3 Hz; Mixing of surface waves and SH waves: 3 - 8 Hz; > 8 Hz  - SH waves dominate 



Evidence of a body-wave background with random angles of incidence is found by cross-

correlations peaking at non-zero time-lag for frequencies above 4 Hz 

Surface and underground cross-correlations 
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Vertical component: 

• Rayleigh fundamental: < 2 Hz; first overtone: 2.5 – 5 Hz; 5- 8 Hz: mixing of body wave and second overtone of Rayleigh 

waves; >8 Hz: dominated by P-waves (local + background) 



Calculating Newtonian noise involves integrating the 3D wavefield over a volume 

surrounding all test-masses 

Towards modeling Newtonian noise from surface sources 
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Using an Elastodynamic solver to simulate the ground motion (EDT): 

+ Vertical 

Source 

distribution 

on surface 

Input 

subsurface 

model 

Output ground motion 
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https://bwk.kuleuven.be/bwm/edt


Modeling Newtonian noise 
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Simulated vs observed horizontal and vertical 

ground motion on the surface and at depth 

• Vertical sources are used 

• Vertical PSD is normalized at the surface 

• The horizontal PSD in the band 3-5 Hz is not reproduced 

in the simulations 

• Offset at low frequencies in the underground horizontal 

PSD 



Newtonian noise from surface sources 
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Model attributes. 

• At frequencies < 3 Hz, the 90th percentile of the site-

based Newtonian noise is predicted to be 

approximately equal to the Einstein Telescope design 

sensitivity curve.  

• Here, Rayleigh wavelengths are large and the 

seismic waves in the bottom-most layer give the 

dominant contribution to Newtonian-noise 

estimates.  

• In the band from 3 – 5 Hz, , Newtonian noise estimate 

can be treated as a lower limit: 

• seismic amplitudes are uncertain due to the 

limitations in the subsurface model and seismic 

source mechanism 

• At frequencies above about 5 Hz, surface waves in the 

top layers are the main contributor to the total 

Newtonian-noise level 

From the viewpoint of surface-source Newtonian noise, the EMR-site offers suitable 

conditions to host Einstein Telescope 



Body-wave background contributes to about half of the underground seismic noise 

Ambient body-wave background 
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Total seismic noise underground 

𝑃𝑆𝐷 𝑓 depth   = 𝑃𝑆𝐷 𝑓 surface𝛼 𝑓 + 𝛽 𝑓 ,  where 𝛽 𝑓  𝑖s the body − wave background 

 

• The attenuation 𝛼 𝑓  is independent of day-night time 

• The body wave background is more pronounced at night 

, 



Newtonian noise predicted for EMR-site 
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Parameters for background body-wave 

NN 

• Both the displacement amplitude and the wave 

direction are assumed to be distributed isotropically 

• 1/3rd P-waves and 2/3rd S-waves. 

• Fixed P-wave speed - 4.50 km/s, and  2.82 km/s for 

S-waves 

• Random phase offsets for each component. 

• The assumption of plane waves implies:  

• we do not consider re-scattering and 

instrinsic-dispersion of the waves 

• the waves are not modified when crossing a 

soil layer boundary and the amplitude is 

constant everywhere in space 

• Therefore we expect that the modeled results for the 

body waves may overestimate the Newtonian noise 

The mean Newtonian-noise estimate is up to a factor of 2 higher than the ET-D design 

sensitivity for frequencies up to about 8 Hz, and the body-wave background dominates 



Conclusions 
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Seismic 

• The fundamental Rayleigh-wave mode dominates the vertical component of surface-seismic noise up to frequencies of 5 

Hz. While the first Rayleigh-wave overtone and the fundamental mode were found to contribute equally in the band 5−8 

Hz, a weak second Rayleigh-wave overtone was observed for frequencies greater than 10 Hz 

• Contribution from body waves to seismic noise is dominant for frequencies greater than 8 Hz. Although in horizontal 

component, above 4 Hz, mixing of body waves and higher modes of surface wave occurs 

• P-wave velocities at the site range between 1.5 to 2 km/s near the surface and is about 4 – 5 km/s at 250 m deep. Near 

surface S-wave velocities are as low as 120 m/s 

• Transition to hard rock occurs at a depth between 15 – 20 m beneath at the borehole site and again at a depth between 

35 – 40 m 

• At 250 m the seismic noise reduces by about a factor 104 in power. At 250 m depth, the horizontal component 

attenuates faster (4 Hz onwards)  than the vertical component (9 Hz onwards)  

• Background body waves contribute to about half of the underground noise for frequencies greater than 4 Hz 

Newtonian noise: 

• Newtonian noise estimated due to surface sources is lower than ET-D sensitivity except in the band 3-5 Hz where the 

estimations can be treated as lower limit 

• The mean Newtonian-noise estimate is up to a factor of 2 higher than the ET-D design sensitivity for frequencies up to 

about 8 Hz, and the body-wave background dominates 

• The soft-soil surface layer traps and damps most of the surface activity and little noise penetrates to the depth of the 

mirrors 

• The relatively low wave speeds at the surface lead to many small patches of coherent movement and the total noise 

from the surface averages out to a large degree 



Outlook 
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• Larger aperture surface-surveys can be conducted at the site for delineating the surface from the body waves 

• Surface array measurements by using three component geophones can be conducted in order to estimate the depth 

hard rock by using the H-V spectral ratio 

• Future geology models should treat the subsurface as a three-dimensional medium that includes measured local 

material damping factors, such that the simulated and the observed ground motion can be matched for all frequencies 

• In addition, the differences between measured and simulated underground PSDs below 3 Hz suggest that source 

mechanisms other than vertical excitation may have to be included 

• It is recommended that future studies characterize the body-wave background by employing a string of  downhole tri-

axial sensors, and model the Newtonian noise arising from it in detail, by including distant and underground sources that 

can reproduce the acquired seismic data at all depths 

• Current calculation of NN due to the background body-waves may be overestimated. Hence, the displacements of the 

subsurface elements may be more accurately obtained by solving the elastic wave-equation for a random distribution of 

body-wave sources 
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Questions? 


