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Extending the LIGO frontier
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Extending the LIGO frontier

LIGO detectors shot noise limited above 200 Hz

Great scientific potential from improved
high-frequency sensitivity:
o Testing physics near the black hole horizon
o Probing dense nuclear matter

o Independently constraining cosmic expansion

Two means of reducing shot noise:
1. More power on the beamsplitter
2. Squeezed light

Quantum noise
limited
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Extending the LIGO frontier
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Frequency-dependent squeezing in O4

300 m filter cavity to be installed at both sites
e Site prep underway; vacuum tube installation in Fall 2021
e Expected to enter commissioning by early Spring 2022
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https://dcc.ligo.org/LIGO-T1900649

Achieving maximum squeezing in LIGO and beyond

In a real interferometer, random optical errors will always be present

e Optical fabrication limits:
o Radius of curvature to £0.1%
o Higher-order defects (e.g., point absorbers)

e Hand-placement of optics:
o Relative positioning to £3 mm

Poses a major challenge for 1% intercavity mode-matching, for 10+ dB of squeezing

We explore extent to which cavity design can be made maximally insensitive to
common optical errors, to achieve optimal squeezing performance
e Applied to case of LIGO A+ signal recycling cavity (SRC)



Signal recycling cavity (SRC) optimization
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Six SRC parameters:

e Radii of curvature: Ryes, Reny Ramy

e Distances: L L L

BS-SR3’ TSR3-SR2’ TSR2-SRM

Two constraints:

e Fixed total length to preserve 7, (45 MHz)
sideband resonance
e 100% mode-matching to arm cavities

(Qspc = Gapy @t ITM HR surface)

Arm cavity and power recycling cavity
modes treated as fixed



Optimization procedure

1. Construct cost function penalizing:

o Partial derivatives of observed squeezing
with respect to each SRC parameter

o Marginally stable cavity
o  Higher-order mode co-resonances

o Larger beam size at SRM

2. ldentify lowest-cost cavity design via
particle swarm optimization

o Parallelizable evolutionary search algorithm

o lteratively executes a Finesse simulation of
LIGO A+ interferometer, while varying SRC

Example of particle trajectories during optimization
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Optimal SRC design

Nominal versus optimal SRC parameters:

Parameter A+ Nominal A+ Optimal
SR3 radius of curvature 35.97 m 48.13 m
SR2 radius of curvature -6.41m -3.31m
SRM radius of curvature -5.69 m -36.41 m
Beamsplitter to SR3 length 19.37m 19.96 m
SR3 to SR2 length 1544 m 22.89 m
SR2 to SRM length 15.76 m 7.71 m
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Squeezing performance improvement

Relative squeezing improvement 0,8 {-riadb : S0Jhycontidenc (o Jomina) -
. . | === -6.25dB : 50% confidence (A+ Optimal)
estimated via Monte Carlo method: - HE Squeezing distribution (A4 Nominal)
. ' . S - B Squeezing distribution (A+ Optimal)
Start with nominal design under test Z 0.6F 1 -
= L
2. Add realistic random errors to each ~
SRC parameter Z o4l
Compute observed squeezing ﬁ@ T
lterate for 2,000 trials o%
0.2
Ratio of median shot noise reduction

factors: 1.43 0.0l
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Observed Squeezing Level (dB)

*Here, the squeezing level only has relative meaning
(not exactly A+ parameters; excludes readout loss) 11




Achieving maximum power in LIGO

Point albbsorbers currently limit
LIGO’s power-handling capability

e Present on half the LIGO test masses
e Induce increasingly higher arm losses
with higher power

Objective:

Reduce loss susceptibility of arm
cavities to point absorbers by eliminating
higher-order mode (HOM) co-resonances

- ¢ LHO

¢ LLO (pre-realign)
| ¢ LLO (post-realign)
| |= = Ideal case

[ 1SIS model range

L

0 25 50 75 100 125

Input Power (W)
Figure from Brooks et al. 2021 [LIGO-P1900287]
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https://dcc.ligo.org/LIGO-P1900287

Expected coating nonuniformity in O5
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Expected profiles:

Measured O4 ETM coating plume
profile (LIGO-T2000643) times
thickness correction factor for Ti:Ge

O5 ETM = 04 ETM x 1.5
O5 ITM = 04 ETM x 0.6

Edge roll-off produces static shift
of HOM resonance frequencies

Radius [mm)]
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https://dcc.ligo.org/LIGO-T2000643

Residual thermal deformation

Ring heater (RH) compensation of 375 mW of absorbed power
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https://dcc.ligo.org/LIGO-P1600169

Residual thermal deformation

Ring heater (RH) compensation of 375 mW of absorbed power

Excellent correction in central 160 mm

“Overcorrection” at outer radii

e Net surface rises towards edge

Produces power-dependent shift of
HOM resonance frequencies
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Implication for LIGO A+ arm cavities
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https://doi.org/10.1364/AO.53.001459
https://dcc.ligo.org/LIGO-P1900287

Implication for LIGO A+ arm cavities
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Implication for LIGO A+ arm cavities
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Mitigation with custom polishing figure
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Mitigation with custom polishing figure
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Strategy:

Shift “cold” locations of Mode 7
resonances to higher frequency

Then, any degree of heating
strictly reduces the optical gains
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Mitigation with custom polishing figure

Arm Scan Proposed O5 Proﬁles
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Strategy:

Shift “cold” locations of Mode 7
resonances to higher frequency

Then, any degree of heating
strictly reduces the optical gains
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Mitigation with custom polishing figure

Arm Scan Proposed O5 Proﬁles
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Strategy:

Shift “cold” locations of Mode 7
resonances to higher frequency

Then, any degree of heating
strictly reduces the optical gains
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Arm cavity loss reduction

Monte Carlo SIS model including:
Coating absorption at aLIGO level (0.3 ppm)
Optimal ring heater correction

1 randomly-positioned point absorber/test mass
e Uniformly distributed within central 150 mm
e Absorptivity fixed to aLIGO level

(20 mW @ 250 kW, when centered)

Random surface roughness (= aLIGO PSD)

Random beam miscenterings
e Gaussian-distributed (u=0 mm, o=5 mm)
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Conclusions

We have presented a two-part design study of the LIGO A+ interferometer

1. Signal recycling cavity:
Optimization for maximum squeezing robustness to curvature and length errors

2. Arm cavities:
Reduction of point absorber scattering loss through nonspherical test mass figures

First results look very promising

e |arge performance improvements appear to be possible
e Achievable without major infrastructural changes
e Minimal impact to current length and angular control systems

Gives A+ the best chance of reaching design power, with maximal squeezing
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