

Closing the loop on SEI and ISC for interferometer analysis

SEI: seismic systems, SUS: suspensions ISC: interferometer sensing and control ASC: alignment sensing and control

L Barsotti et al 2010 Class. Quantum Grav. 27 084026 With LHO LSC, ASC and DARM noise budget curves

Closing the loop on SEI and ISC for interferometer analysis

Lee McCuller (MIT) GWADW 19 May. 2021

L Barsotti et al 2010 Class. Quantum Grav. 27 084026 With LHO LSC, ASC and DARM noise budget curves

Example: ASC in Fabry-Perot cavity

- Auxilliary controls noises of high-finesse cavities suffer from a curse
 - The relative sensitivity of length and alignment scales with finesse
- This naturally entails that if length is quantum-noise limited

<u>The alignment D.O.F. should never</u> <u>have control in-band</u>

Alignment is also usually sensed from pick-offs which further reduces relative sensitivity

McCuller, GWADW May '21

* valid for cavities with $2 < \phi_{\rm Gouv} < 2\pi - 2$

Example: ASC in Fabry-Perot cavity

 c_0

1000ppm input coupler:

 $rac{4}{T}\sim 4000$ (bad factor)

300m cavity (w~10mm) with 1uRad of RMS misalignment:

 $\frac{k\omega}{2} \theta_{\rm RMS} \sim .03$ (good factor)

1000x more power in sensing than (backscatter driven) length:

$$rac{1}{\sqrt{1000}}\sim .03$$
 (good factor

$$|c_{00}| = \sqrt{\frac{4}{T}} |b_{01}| \cdot k\omega \delta\theta \approx \frac{4}{T} \cdot \frac{k\omega}{2} \theta_{\rm RMS} \cdot |c_{01}|$$

* valid for cavities with
$$2 < \phi_{\rm Gouy} < 2\pi - 2$$

4

10x safety and 6db sqz: 20x (bad factor)

ASC Loop needs to roll off by: $20 \cdot 4000 \cdot .03 \cdot .03 \approx 75$

assuming no other DC misalignment, and that ASC is guantum-limited in its sensing

To summarize what all you need

- Ground noise
- SEI performance model
 - appropriately blended control
- SUS model
 - appropriately damped control
- Electronics Models
 - Margin to quantum limit

many of these steps require a human to design fiducial/actual loop models at each iteration

- Interferometer Model, with control
 - length sensitivity
 - RMS sensitivities
 - bilinear sensitivities
- Contamination of ASC/LSC error points (IFO + SUS + SEI model)
 - Vertex
 - input-output optics
 - VCO and Laser noises
- Understanding of margins, discrepancies
 - the ASC residual is not the RMS
 - nor is the alignment dither system residual (apparently, study ongoing)

Model Framework in Statespace

Model Framework in Statespace

Seismic Model Internals

Seismic sensing PSD-like

LQE/Kalman Seismic Toy Example

LQE/Kalman Seismic Example

LQE/Kalman Seismic Example

LQE/Kalman with Whitening

LQE/Kalman with Whitening

LQE with AAA-fit (optimal?) Weighting

The big ideas

- Fitting can now create the needed root-PSD noise, weight, plant filters.
- Essentially building these models to study LIGO, not yet in this framework
- Such models, in some framework, are needed for LSC/ASC design requirements
- If done in statespace, it seems possible to remove all design freedom of the control system → inclusion as fundamental noise curves
- Speculation: If the "aspirational optimum" sensing blend curves are saturated at each point, no *further information is available* → AI and bilinear subtraction will not help to surpass limits implied by those curves
- We can thus establish performance bounds given as-built or as-designed configurations
 - Find how near current-gen is from the as-built bounds.