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Quantum noise and vacuum state

* Quantum Noise of gravitational wave detectors comes from the
vacuum state entering interferometer’s output port

Vacuum state is
usually represented
in an amplitude-

phase quadrature
plane
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Quantum noise of aLIGO and advanced Virgo in O3

* Advanced gravitational wave detectors, such as aLIGO and advanced Virgo,
are starting to see that quantum noise limits the entire detection bandwidth

Il I [ |
—— Total noise of interferometer with unsqueezed vacuum state

—— Quantum noise model with unsqueezed vacuum state
—— Total noise with squeezing injected at ¢ = 35°

\ — Inferred quantum noise with squeezing injected at ¢ = 3§°
i 501 \ - §3E;Twsmmdl m— * LIGO has seen the light quantum effect
: \ ...w'| interacting with heavy mirrors
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H. Yu, et al. Nature, 583(7814), 43-47, 2020
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Frequency dependent squeezed vacuum source at TAMA

* An audio-frequency squeezer and a full-
scale filter cavity prototype have been
constructed by using TAMA facilities
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Frequency dependent squeezed vacuum source at TAMA

* An audio-frequency squeezer and a full-
scale filter cavity prototype have been
constructed by using TAMA facilities
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Frequency dependent squeezed vacuum source at TAMA

* An audio-frequency squeezer and a full-
scale filter cavity prototype have been
constructed by using TAMA facilities
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Frequency dependent squeezed vacuum source at TAMA

* An audio-frequency squeezer and a full-
scale filter cavity prototype have been
constructed by using TAMA facilities
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Frequency dependent squeezed vacuum source at TAMA

120
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Frequency dependent squeezed vacuum source at TAMA

Squeezing [dB]
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Frequency dependent squeezed vacuum source at TAMA

Squeezing [dB]
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Frequency dependent squeezed vacuum source at TAMA
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Frequency dependent squeezed vacuum source at TAMA
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Frequency dependent squeezed vacuum source at TAMA
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Frequency dependent squeezed vacuum source at TAMA
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Frequency dependent squeezed vacuum source at TAMA
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Low frequency noise Iinvestigation

 When characterizing frequency dependent squeezing, we have seen
low frequency noise which is caused by back scattered noise

e To reduce back scattered noise:

e Tilt homodyne lens
* ~20 deg was tilted while introducing 0.1%
losses and astigmatism

 Add Faraday isolator

* 3% optical losses
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Low frequency noise Iinvestigation

* A loop was designed and demonstrated to be able to reduce back
scattered noise
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Filter cavity auto-alignment

e A green beam auto-alignment to filter cavity system was successfully
implemented based on wavefront sensing

* The IR auto-alignment is
achieved simultaneously with
green because of their overlap
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Filter cavity auto-alignment
| Power spectrum \ i
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Filter cavity auto-alignment

Power spectrum
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Filter cavity auto-alignment

* The filter cavity auto-alignment is sensing and controlling the green
beam, but also helps to stabilize IR beam

 We use a test IR beam to check the stability of filter cavity alignment
and detuning
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Filter cavity auto-alignment
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Filter cavity auto-alignment

* Longterm stability: filter cavity auto-alignment is important to stabilize
the filter cavity alignment and detuning for squeezed vacuum
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Filter cavity new length control

* A pre-stabilized coherent control field reaching filter cavity with one
sideband on-resonance and the other off-resonance, which tells us
the filter cavity mirrors differential length information
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* This loop reduces IR length noise by introducing small length noise
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Filter cavity new length control

* Ain-loop check of the IR length noise shows less than 1Hz noise is
achieved
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Summary

* The frequency dependent squeezing low frequency noise was
investigated. We designed a loop to reduce it by up to 5dB

* The frequency independent squeezing spectrum becomes cleaner and
squeezing level is increased to 6.5dB

* A filter cavity auto alignment system was implemented, which pre-
stabilizes filter cavity length noise to be less than 9Hz and guarantees a
long term stability

* A new filter cavity IR beam length control scheme ‘CCFC’ was tested,
which further reduced length noise to be less than 1Hz

Future plan

 We are installing a new OPO, purchasing a customized in-vacuum
Faraday isolator, upgrading old TAMA opley, filter cavity automation



