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Background
aLIGO      → Room temperature

1μm laser
Fused silica test mass+ fibers
40 kg test mass
~10-22 Hz-½ @10Hz

CE1/CE2(1)       → Room temperature
1μm laser
Fused silica TM + fibers
320 kg TM
~10-24 Hz-½ @10Hz

CE2(2)        → Cryogenic
2μm laser
Silicon TM + ribbons
320kg TM
~10-24 Hz-½ @10Hz
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Cosmic Explorer

???

From [1]

Goal: come up with a “realistic” CE 
suspension design



Outline

1. Requirements / What do we want

2. Silicon

3. Design approach

4. A few concepts

5. Conclusion
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Requirements - CE2(1)
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Assume x100 better seismic isolation compare to aLIGO at 1Hz

Requirements:
● Dia. 700mm, Mass: 320kg
● Suspension modes as low as possible. Goal: max ~3Hz

We want:
● Violin mode frequency ∝ stress in the fibers: stress as high 

as possible

Courtesy of K. Kuns



Requirements - CE2(2)
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Courtesy of K. Kuns

Assume x100 better seismic isolation compare to aLIGO at 1Hz

Requirements:
● Dia. 800mm, Mass: 320kg
● Suspension modes as low as possible. Goal: max ~3Hz

We want:
● Violin mode frequency ∝ stress in the ribbons: stress as 

high as possible
● Lowest spring constant in the laser beam direction to limit 

thermal noise: ~10:1 ratio between thickness and width of 
the ribbons



Silicon
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Silicon is a brittle, cubic crystalline solid.

1. Uniform thermal expansion in all directions
2. Uniform change in elasticity in all directions [2]

Brittle material

1. Failure is considered to occur at 
fracture rather than yielding

2. Compressive strength larger than 
tensile strength

Crystalline structure

1. Mechanical properties depend on 
crystal orientation → anisotropic 
(see next slide)

https://www.youtube.com/watch?v=xkbQnBAOFEg

Diamond cubic crystal structure

Unit cell of silicon



Silicon - Young’s modulus and Poisson’s Ratio [3]
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From [3]

● Anisotropic material
● E varies between 130 and 188 GPa
● E change due to thermal: ~-60ppm/oC 

[4-5]

Thermal negligible for now

Assume isotropic behavior for now

E = 155 GPa

ν = 0.27
(GWINC values)



Silicon - Tensile strength

8

● Calculated tensile strength: 22-47.3 GPa [2,6-7]

● Measured tensile strength (SAW method):
○ 5-7 GPa [8]
○ 0.8 GPa [9]
○ 1.6 GPa [10]
○ >2.5 GPa [11]

● Measured tensile strength (pull/point bending test):
○ ~200 MPa (up to 450 MPa) [12]
○ ~350 MPa (up to 700 MPa) [13]
○ 370 MPa (up to 590 MPa) [14]

● Fracture stress decreases with increasing cross 
section of the silicon sample.

● Coated silicon? [15]

From [10]

σmax = 400 MPa 

From [14]

(too optimistic?)

(current Voyager design [16]: σmax=100 MPa)

We chose:



Fused silica
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Glass in amorphous (non-crystalline) form.

brittle isotropic 

E = 72.7 GPa

ν = 0.167

σ
max 

= 800 MPa  for blades (see next slide)

σ
max 

= 1.2 GPa  for fibers [17]

(GWINC values)

https://www.ligo.caltech.edu/image/ligo20101010a

More conservative numbers for CE1/CE2a



Suspension parameters
Max suspension mode ~3Hz:

● “Scale up” the upper stages (suspension point, top mass and antepenultimate mass), focus on lower stages

● Fiber/ribbon length: 2m

● Blade springs between the penultimate mass and the test mass
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Component Material Dimensions (mm) Comments

Test mass
CE1/CE2(1) Fused Silica 700 dia. x 400

~320kg
CE2(2) Silicon 800 dia. x 300

Fibers/Ribbons

CE1/CE2(1) Fused Silica 1 dia. (body) x 2000 σ
max 

= 1.2 GPa

CE2(2) Silicon 2000 x 5 x 0.5
σ

max 
= 400 MPa

10:1 ratio between W and H



Blade model
● Find realistic dimensions for the blades

● Blade = simple cantilever beam with end mass

● 2 DOFs model (PUM+TM)

● Unknowns: Length (L), width (W) and thickness (H)

● H as small as possible
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Courtesy of K. Arai
Maximum stress in cantilever beam:

Requirement #1: σ ≤ σ
max

Requirement #2: ⍵ ≤ ⍵
bounce

First resonance frequency (blade weight negligible):



Blade model
● Two equations, three unknowns

● TM diameter up to 800mm. Fix blade length at 410mm
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CE1/CE2(1) CE2(2)

Young’s Modulus 72.7 GPa 155 GPa

TM weight 320 kg

Bounce frequency 3Hz

Maximum stress 800 MPa 400 MPa

PUM weight 400 kg

Top blade stiffness 
(maraging steel)

4300N/m

Length 410 mm

Width 135 mm

Thickness 5.50 mm 7.25 mm



Blade model
● Two equations, three unknowns

● TM diameter up to 800mm. Fix blade length at 410mm
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CE1/CE2(1) CE2(2)

Young’s Modulus 72.7 GPa 155 GPa

TM weight 320 kg

Bounce frequency 3Hz

Maximum stress 800 MPa 400 MPa

PUM weight 400 kg

Top blade stiffness 
(maraging steel)

4300N/m

Length 410 mm

Width 135 mm

Thickness 5.50 mm 7.25 mm

● Stringent dimension requirement with CE2(2)

● More freedom with CE1/CE2(1). Chose 
dimensions that seem reasonable (can be 
improved)



Concept #1
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CE1/
CE2(1)

CE2(2)

● CAD done in SolidWorks
● Blade width: 135 → 10 mm at the tip
● Assuming lossless bonds
● Flat clamps for now
● SSTL wires attached to prism

prism

SSTL wires

blade 
clampblade 



Concept #1
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● Parasolid imported in ANSYS APDL
● Loads: SSTL wires clamped at the top, gravity

CE1/CE2(1) CE2(2)

Max stress in blade 687 MPa 287 MPa

Bounce freq. 1.36 Hz 3.46 Hz

First violin mode freq. 204Hz 99Hz

● Rough agreement between theory and FEA
● Blade’s dimension validated to start exploring different 

concepts

Von Mises stress

Displacement vector sum



Concepts
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● A lot of designs considered...



The one we like 

17From [1]

● Two-parts PUM bonded together
● 4 spring blades in the middle section



Conclusion
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● Proposed design heavily inspired from the Advanced LIGO suspension

● This is just a concept! A lot of elements still need to be studied (upper stages, bonds, blade 

clamps, etc.)

● Using silicon put stringent requirements on the suspension design, but might be doable 

● More ideas still to be explored (i.e. Euler springs [18] with MIT/UCLouvain)

Thank you
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0.31 Hz 0.32 Hz 0.38 Hz 0.53 Hz

0.61 Hz 0.70 Hz 0.86 Hz 0.98 Hz

0.99 Hz 1.36 Hz 1.84 Hz 1.91 Hz
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CE1/CE2a



0.28 Hz 0.33 Hz 0.34 Hz 0.64 Hz

0.73 Hz 0.90 Hz 0.90 Hz 1.13 Hz

1.69 Hz 2.04 Hz 3.46 Hz 4.89 Hz
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CE2b



Sapphire?
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Young Modulus 400 GPa

Tensile Strength 400 MPa

Worse than silicon!



Maximum stress equation
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2DOF eigenvalues
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2DOF eigenvalues
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