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Cryogenic Voyager LIGO

e Next generation of LIGO
observatories

e Test masses will be made of silicon
at 123K to leverage vanishing
coefficient of thermal expansion
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Potential Cooling Choices

Type of Cooling

Vibration Free?

Can Cool at 123 K?

Mechanical: Pulse tube/Stirling | N Yes

Cycle

Thermoelectric Cooling Yes NO (imit of ~155 K)
Radiative Cooling Yes Yes

Optical Refrigeration Yes* Yes*

*With some caveats




Limits of Radiative Cooling for Small Objects

e Governed by Stefan-Boltzmann law
o P, ox AT*
e Leads to strong geometrical limits when

trying to keep elements light
o For Voyager’s test masses, up to ~10 W of
radiative cooling is possible
o For gram scale mirrors, it is not very efficient

e This is where optical refrigeration could
be useful, as there is no fundamental
limit on the cooling power due to the
size of the mirrors




LIGO Voyager and Strain Sensitivity

e Quantum noise remains the limiting o ton Vo B, = oW G El0
‘ === Seismic: aLIGO/10
. . —22 === Newtonian Gravity: subtraction
fa Cto r at m Ost d ete Ctl O n freq u e n CI es 10 — gusv:)tcnsion ?herr:lb;lzl(l))Q(B Kb;i bltades & ribbons

mm= Coating Brownian: a-Si:SiOs @eoat = 5.5¢-5
== = Substrate Brownian: 123 K Si mirror (200 kg)

¢ Squeezed vacuum iS the SOIUtion — aLIGO 03 == gﬁﬁ?ﬁfﬁ&?ﬁ?{jﬁfeg@
= 10723 == = Substrate Carrier Density: 10'*/cm?®
. . R m—— Total
(other than increasing laser power) - v o
& N
e Loss degrades squeezing - 1
10—24
[ ] r NS \\\
In current detectors loss occurs PN LT
mainly due to mode mismatch N i H\\ UG
107 g 102 10°

Frequency [Hz]

between cavities (e.g. OMC)

R. Adhikari et al. (2019)



Phase-Sensitive Optomechanical Amplifier
(PSO MA) - j PSOMA Cavity
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Optical Refrigeration Basics

e Cooling with a laser- familiar ideas from
cooling of gases

e Not Doppler shift, but anti-Stokes
o Mean fluorescence event is of lower
wavelength/higher energy than the pump light

e Crystal doped with certain rare earth (RE)
ijons

e Extra energy comes from phonon bath in
host crystal
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Optical Regrigeration Cooling Model

|0)-|1) and |2)-|3) transitions happen
much faster than relaxations

Boltzmann quasi-equilibrium,
mediated by phonons

Cooling power and cooling efficiency,
the most relevant figures of merit, can
be derived from this and some
material properties

Quantum efficiency- limited by
nonradiative decay-is the main
limiter on cooling power
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Fluorescence Heating

Resulting from the cooling
mechanism, the fluorescence will
be of a much higher power than the
cooling

Can be mitigated
o Shielding
o Transparency

“It is as though one wants to use a
[100 mW] refrigerator that had [an
80 W] refrigerator light bulb that

can't be turned off.” (Seletskiy et.
al, 2016)

YLF thermal link

Hehlen et al. (2018)
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Important Dopants

e Ytterbium (Yb3*)
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Cheap

Effective

Proven

Cooled down to 91 K, 135 K with load

e Holmium (Ho®")

Newer

No cryogenic cooling demonstrated to
date

Potential for higher cooling power
Current crystals can cool to ~120 K
Sllicon transparent to its
fluorescence
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Design Considerations

Shield against fluorescence

o Choose Ho3+ for transparency and potential for
high cooling efficiency

Good thermal contact with mirror (short
thermal link)

Multipass configuration
Minimize radiation pressure noise

Minimize readout contamination (work in
progress)

e

Heat Flow Mirror

Heat Flow




Optical Cooling Power for PSOMA (Ho:YLF)

Evaluated for real and
theoretical crystals

With some reasonable
improvements in
crystal quality, optical
refrigeration offset
significantly more
power than radiative
cooling
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Radiation Pressure Noise

~ 7.7 W of fluorescence
hits the highly reflective
mirror surface

Fluorescence is noisy
o Pump laser noise
o “Wave
interaction/Excess
photon noise” due to
linewidth of fluorescence

RP noise may be a
concern in
implementation
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Conclusions

e Optical refrigeration may be more effective than radiative cooling
in cooling PSOMA mirrors or other small optomechanical
components

e Practicality relies on some improvements in crystal growth,
expected to come in the next several years. (Rostami et al. 2021)

e Preliminary results show that high performance optical
refrigeration does not add significant noise to PSOMA



