

Radio pulsars and relativistic gravity

Dr. Vivek Venkatraman Krishnan Max-Planck-institut für Radioastronomie Bonn, Germany

Gravity regimes and experiments

Pulsars

- □ Neutron stars that emit coherent magnetic dipole radiation
- High rotational stability
- arrival times of "pulses" are highly regular and can be "timed" to unparalleled precision*

□ 10% of known pulsars in binary systems 10% of binaries exhibits relativistic effects

The $P - \dot{P}$ diagram

How do we measure it?

The art of pulsar timing!

Pulsar timing, ToA and the residual

But how do you know what is wrong?

Un-modelled/ inaccurate models of spin, orbital, astrometric & relativistic dynamics in the system create short to long term drifts in the timing residuals.

One can fit for such offsets and develop a better pulsar "model"

For the next few years....

The power of pulsar timing

[Kerr et al. 2020]

Spin parameters:

Period:

Astrometry:

Position in the sky: Proper motion: Distance:

Orbital parameters:

Orbital period: Projected semi-major axis Eccentricity:

2.947108069160717(3) ms (Reardon et al. 2015)

3 atto seconds uncertainty!

0.6 µas 140.911(3) mas/yr 1<u>56.79 ± 0.25 pc</u>

(Reardon et al. 2015) (Reardon et al. 2015) (Reardon et al. 2015)

0.1 µs uncertainty!

0.102251559297(1) days 31 659 820.5(2) km 0.436678414(5)

(Kramer et al., submitted) (Heusgen et al., in prep.) (Heusgen et al., in prep.)

Relativistic effects: The PK formalism

 \Box Periastron advance ($\dot{\omega}$)

 \Box Gravitational wave damping $(\dot{P_b})$

 \Box Shapiro delay (r, s)

 \Box Gravitational redshift and transverse Doppler effect (γ)

Measurements from Geometry & Algebra. Hence theory independent!

Theories of gravity relate PK parameters to masses

The mass-mass diagram

Mass measurements of binary pulsar systems

What if you can measure more?

Testing gravity

$$\dot{\omega} = 3 \left(\frac{G^{2/3}}{c^2}\right) \left(\frac{P_{\rm b}}{2\pi}\right)^{-5/3} \frac{(m_{\rm p} + m_{\rm c})^{2/3}}{1 - e^2}$$
$$\gamma = \left(\frac{G^{2/3}}{c^2}\right) \left(\frac{P_{\rm b}}{2\pi}\right)^{1/3} e \, m_{\rm p}(m_{\rm p} + 2m_{\rm c}) \, (m_{\rm p} + 2m_{\rm c})^{-4/3}$$
$$- \frac{192\pi G^{5/3}}{5c^5} \left(\frac{P_{\rm b}}{2\pi}\right)^{5/3} \frac{(1 + 73e^2/24 + 37e^4/96)}{(1 - e^2)^{7/2}} m_p m_c (m_p + 2m_{\rm c})^{-4/3}$$

The Hulse-Taylor pulsar: PSR B1913+16

[Weisberg & Huang 2016]

- □ Gravitational waves exist with energy loss predicted by GR
- □ GR holds in strongly curved spacetime
- DNS mergers exist

The double pulsar

Animation: Breton

The double pulsar: until now

Telescope, USA

Telescope, France

1 million arrival time estimates over 16 years

Australia

Germany

Kramer et al. (submitted)

 $m_{\rm p} = 1.33818(1)M_{\odot}$ $m_{\rm c} = 1.24886(1)M_{\odot}$

7-2 = 5 tests of GR

The double pulsar: gravitational wave damping

The double pulsar: LT precession?

h the hole (because $\dot{\phi}_{obs} = \dot{\phi}_{1PN} + \dot{\phi}_{2PN} + \dot{\phi}_{LT}$ dius is deformed ight: a = 0, 0; a = 0, 5 and a = 1, 0.

$$\dot{\omega}_{\rm LT} = -T_{\odot} \left(\frac{P_b}{2\pi}\right)^{-2} \frac{1}{(1-e^2)^{3/2}} \frac{4m_p + 3m_c}{m_p + m_c} \frac{c}{G} S_p$$

Id the static limit is called the *ergosphere*. The $\dot{\phi}_{cbs}$ [deg/yr] = 16.899317(13) Schwarzschild forizon. As the rotation $\operatorname{incre} \hat{\mathscr{D}}_{2,p\mathcal{N}}[\operatorname{deg}/\operatorname{yr}] = 0.000439$ 1M) and the outer horizon decreases $(\operatorname{from}_{LT}[\operatorname{deg}/\operatorname{yr}] = -0.000377 \times I_A [10^{45} \,\mathrm{g\,cm}^2]$

[Kramer et al. (submitted)]

Constraints on MoI

J1141-6545

- □ Pulsar-WD system with a young pulsar -394ms spin period in a 4.74-hr orbit
- Peculiar binary evolution
- LT precession makes the orbit tumble: 1.7" per year
- □ Use LT precession as a tool to infer the spin-period of the WD

[Venkatraman Krishnan et al. 2020]

Tests of alternative theories of gravity: DEF gravity

□ DEF gravity:

- □ Scalar-tensor theory of gravity
- Gravity is mediated by a scalar φ in addition to the Einstein metric $g_{\mu\nu}$
- □ Natural extension of GR, generalisation of JFBD theory

$$\widetilde{g}_{\mu\nu} \equiv A(\varphi)^2 g_{\mu\nu}; \quad A(\varphi) \equiv \exp\left(\frac{1}{2}\beta\varphi^2\right)$$

$$\alpha(\varphi) \equiv \frac{\partial \ln(A(\varphi))}{\partial \varphi} = \beta \varphi; \quad \beta(\varphi) \equiv \frac{\partial^2 \ln(A(\varphi))}{\partial \varphi^2}$$

At infinity, $\varphi = \varphi_0$; $\implies \alpha = \alpha_0; \beta = \beta_0$.

DEF gravity vs Pulsars

J1738+0333 - Freire et al. (2012) J0737-3039A - Kramer et al. (submitted) J1141-6545 - Batrakov et al. (in prep.)

Tests of universality of free fall

Weak equivalence principle

$$E_{grav}=0$$

[louboul et al. 2017]

 $\epsilon \equiv \frac{E_{grav}}{mc^2} \simeq -5 \times 10^{-10}$

Lunar Laser Ranging

 $\Delta \lesssim 4 \times 10^{-4} |\epsilon|$

[Hofmann & Müller 2018]

Strong equivalence principle

Weak field

$$\epsilon \equiv \frac{E_{grav}}{mc^2} \simeq -0.2$$

A stellar triple system

[Voison et al. 2018]

Tests of scalar-tensor gravity: triple system

J0737-3039A - Kramer et al. (submitted)

J1141-6545 - Batrakov et al. (in prep.)

J0337+1715 - Voison et al. (2018)

Pulsars as gravitational wave detectors

There is something, is this gravitational waves?

[Arzomanian et al. 2020]

Pulsar timing: Near future

FAST Telescope, China

MeerKAT telescope, SA

MeerKAT as a pulsar timing instrument

