TESTING FUNDAMENTALLY SEMICLASSICAL GRAVITY

André Großardt Friedrich Schiller University Jena, Germany

2nd EPS conference on gravitation: Measuring Gravity – July 2021

QUANTUM MATTER AS A SOURCE MASS FOR GRAVITY

Does gravity need to be quantised?

Is curvature of spacetime a field living on spacetime?

FROM QUANTUM TO CLASSICAL MASS SCALES

Semiclassical gravity as a fundamental equation:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} \left\langle \hat{T}_{\mu\nu} \right\rangle$$

Weak-field **nonrelativistic** limit: $\nabla^2 V = 4\pi G \langle \psi | \hat{\rho} | \psi \rangle$ with $\hat{\rho} = m \hat{\psi}^{\dagger} \hat{\psi}$

Results in the Schrödinger-Newton equation (here for one particle)

$$i\hbar \dot{\psi}(t,\mathbf{r}) = \left(-\frac{\hbar^2}{2m}\nabla^2 - Gm^2 \int d^3r' \frac{|\psi(t,\mathbf{r}')|^2}{|\mathbf{r}-\mathbf{r}'|}\right)\psi(t,\mathbf{r})$$

⇒ Nonlinear Schrödinger equation

 \Rightarrow yields gravitational **self-interaction** of the wave function

EXPERIMENTAL TESTS OF SEMICLASSICAL GRAVITY

Free spreading of the wave function (interferometric tests):

Effects in optomechanical systems:

Yang et al. PRL 110 (2013) 170401

A.G. et al. PRD 93 (2016) 096003

Two adjacent Stern-Gerlach interferometers

Bose et al.: PRL 119 (2017) 240401

Gravitational phase shift

$$|\Psi\rangle = \frac{\mathrm{e}^{\mathrm{i}\varphi_{\uparrow\uparrow}}}{2} |\uparrow\uparrow\rangle + \frac{\mathrm{e}^{\mathrm{i}\varphi_{\uparrow\downarrow}}}{2} |\uparrow\downarrow\rangle + \frac{\mathrm{e}^{\mathrm{i}\varphi_{\downarrow\uparrow}}}{2} |\downarrow\uparrow\rangle + \frac{\mathrm{e}^{\mathrm{i}\varphi_{\downarrow\downarrow}}}{2} |\downarrow\downarrow\rangle$$

Simplest case: $a \ll \Delta x_{r,s}$, $\tau_{acc} \ll \tau \Rightarrow \varphi_{\downarrow\uparrow}$ only contribution

Semiclassical gravity: $|\Psi\rangle = \frac{1}{2} \left(|\uparrow\rangle + e^{i\phi_{\downarrow}} |\downarrow\rangle\right) \otimes \left(e^{i\phi_{\uparrow}} |\uparrow\rangle + |\downarrow\rangle\right)$

Entanglement witness (Bose et al.):

$$\mathcal{W} = \left| \left\langle \hat{\sigma}_{x}^{(r)} \otimes \hat{\sigma}_{z}^{(s)} \right\rangle + \left\langle \hat{\sigma}_{y}^{(r)} \otimes \hat{\sigma}_{y}^{(s)} \right\rangle \right|$$

 $\label{eq:constraint} \begin{array}{l} 0 \leq \mathcal{W} \leq 2 \text{ for quantised gravity but} \\ 0 \leq \mathcal{W} \leq 1 \text{ for semiclassical gravity.} \end{array}$

EFFECT OF RELATIVE ACCELERATION

$$\frac{GM_{\text{source}}}{r^2} \sim \frac{(1\,\mu\text{m})^3}{(100\,\mu\text{m})^2} = \frac{(1\,\text{cm})^3}{(100\,\text{m})^2}$$

Phases with external acceleration (here for $|\uparrow\uparrow\rangle$):

$$\varphi_{\uparrow\uparrow} = \frac{Gm_r m_s}{\hbar} \int_0^t \frac{\mathrm{d}t'}{|\mathbf{r}_{\uparrow}(t') - \mathbf{s}_{\uparrow}(t')|} + \frac{1}{\hbar} \int_0^t \mathrm{d}t' \, \mathbf{g}(t') \cdot (m_r \mathbf{r}_{\uparrow}(t') + m_s \mathbf{s}_{\uparrow}(t'))$$

results in additional phase:

$$\varphi_{r,s}^{\text{ext}} = m_{r,s}\varphi_0^{\text{ext}} \pm \frac{\mu_B \partial_x B \tau_{\text{acc}}^2}{4\hbar} \int_{\tau_{\text{acc}}}^{\tau+\tau_{\text{acc}}} \mathrm{d}t \, g_x(t)$$

White Gaussian noise: $\langle g_x(0)g_x(t)\rangle = \int \frac{d\omega}{2\pi}S(\omega)e^{-i\omega t}$ and $S(\omega) \equiv S_0$

 \Rightarrow mixed state $\hat{\rho} = \int d\varphi^{ext} P(\varphi^{ext}) |\Psi(\varphi^{ext})\rangle \langle \Psi(\varphi^{ext})|$

ENTANGLEMENT WITNESS WITH NOISE

We find the expectation values (assuming $m_r \approx m_s$)

$$\left\langle \sigma_{x}^{(r)} \otimes \sigma_{z}^{(s)} \right\rangle = \frac{e^{-\gamma}}{2} \left(\cos(\Delta \varphi + \delta \chi) - \cos(\delta \varphi - \delta \chi) \right) \\ \left\langle \sigma_{y}^{(r)} \otimes \sigma_{y}^{(s)} \right\rangle = \frac{1}{2} \left(\cos(\Delta \varphi - \delta \varphi) - e^{-4\gamma} \cos(2\delta \chi) \right)$$

with

$$\gamma = \frac{m_r m_s \Delta x^2 \tau S_0}{8\hbar^2}$$
$$\Delta \varphi \approx \frac{Gm_r m_s \tau}{\hbar (d - \Delta x)} - \frac{Gm_r m_s \tau}{\hbar d}, \quad \delta \varphi \approx \frac{Gm_r m_s \tau}{\hbar (d + \Delta x)} - \frac{Gm_r m_s \tau}{\hbar d}, \quad \delta \chi \approx \frac{Gm_r m_s \tau \delta x}{\hbar d^2}$$

Implies for the entanglement witness: $W \leq \frac{1}{2} + e^{-\gamma} + \frac{e^{-4\gamma}}{2}$

$$\mathcal{W} > 1 \quad \Leftrightarrow \quad \gamma \lesssim 0.75 \quad \Leftrightarrow \quad S_0 \lesssim \frac{6\hbar^2}{m_r m_s \tau \, \Delta x^2}$$

Gravitational energy $\sim 1/a \gg$ Casimir-Polder energy $\sim 1/a^7$

$$\Rightarrow \quad a \gg \frac{1}{2\sqrt{\pi}} \left(\frac{3\alpha}{\rho} \sqrt{\frac{23\hbar c}{G}}\right)^{1/3}$$

With $Gm_rm_s\tau \sim \hbar a$ and $\Delta x \gtrsim a$ for a detectable phase one finds the **noise limit**:

$$S_0 \lesssim \frac{8\,\hbar\,G}{3\pi\,a^3} \ll \frac{64\,\rho}{9\,\alpha} \sqrt{\frac{\pi\hbar G^3}{23\,c}}$$

depending only on material, with $lpha\gtrsim$ 0.35 and $ho\lesssim$ 23 g/cm³

 $\Rightarrow ~\sqrt{S_0} \ll 0.24~\text{fm}~\text{s}^{\text{-2}}/\sqrt{\text{Hz}}$

For **unequal** $M \ge m$ with $\Delta x_r \approx \Delta x_s \approx \Delta x$ we find W > 1 for $S_0 \lesssim \frac{\hbar^2}{M^2 \tau \Delta x^2}$ The closest approach is the radius of the larger particle $R \approx a \approx \Delta x$

$$\Rightarrow \quad \sqrt{S_0} \lesssim \frac{\hbar}{\rho R^4 \sqrt{\tau}}$$

Observable phase ($\Delta \phi \sim \pi$): $GmM\tau \sim \hbar a \sim \hbar R$

 τ < decoherence from gas collisions $\tau_{\rm dec} \sim \sqrt{kTm_{\rm gas}}/(PR^2)$:

$$R^4\sqrt{\tau} \sim \frac{M^2\tau}{\rho^2 R^2\sqrt{\tau}} > \frac{mM\tau}{\rho^2 R^2\sqrt{\tau}} > \frac{\hbar}{G\rho^2 R\sqrt{\tau_{dec}}} \sim \frac{\hbar\sqrt{P}}{G\rho^2} (kTm_{gas})^{-1/4}$$

$$\Rightarrow \quad \sqrt{S_0} < \frac{8G\rho}{9\sqrt{\zeta(3/2)}n_{\text{gas}}} \left(\frac{m_{\text{gas}}}{3kT}\right)^{1/4}$$

	Bose et al.	interstellar	
Material	diamond	osmium	
Density	3.5 g/cm ³	23 g/cm ³	
Medium (gas)	air	hydrogen	
Temperature	150 mK	1 µK	
Pressure	10 ⁻¹⁵ Pa	10 ⁻²³ Pa	
Particle density	500/cm ³	1/cm ³	
$\sqrt{S_0} <$	1.4 pm s ⁻² / \sqrt{Hz}	2.1 nm s ⁻² / \sqrt{Hz}	

- « nano-g in drop tower experiments?
- active mitigation or precise tracking of $g_x(t)$?
- ▶ space? ($\sqrt{S_0} \sim 5 \text{ fm s}^{-2}/\sqrt{Hz}$ in LISA Pathfinder)

What can different experiments teach us about gravity?

FALSIFICATION POWER OF EXPERIMENTS

If gravitational spin-entanglement can be detected over 100 $\mu\text{m}...$

can a self-gravitational effect on spin be detected?

Spin superposition state (initially Gaussian in space):

$$|\Psi(t)\rangle = \alpha \mid\uparrow\rangle \otimes \int d^3 r \,\psi_{\uparrow}(t, \mathbf{r}) \mid \mathbf{r}\rangle + \beta \mid\downarrow\rangle \otimes \int d^3 r \,\psi_{\downarrow}(t, \mathbf{r}) \mid \mathbf{r}\rangle$$

$$\hat{H} = \hat{I} \otimes \left(-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}} + |\alpha|^2 U_{\uparrow} + |\beta|^2 U_{\downarrow} \right) + \hat{\sigma}_z \otimes V_{\text{acc}}$$

- ► $U_{\uparrow\downarrow}$ depend on ψ_{\uparrow} and ψ_{\downarrow} \Rightarrow nonseparable Schrödinger eq.
- Can be made linear and separable by perturbative approach
- Homogeneous V_{ext}, V_{acc} only yield phase + displacement
- Both the wave function width and split of classical trajectories can be in three regimes defined by atomic scale ~pm and particle size ~ μm

SPIN EXPECTATION VALUE (PRELIMINARY!)

$$\langle \hat{\sigma}_{x}
angle = \mathrm{e}^{-\gamma_{SN} - \gamma_{g}} \cos(\varphi_{lphaeta} + \varphi_{g} + \varphi_{SN})$$

- $\varphi_{\alpha\beta}$: initial relative phase between α and β
- ► $\varphi_g \sim \langle g \rangle$ COW phase, $\gamma_g \sim var(g)$ acceleration noise decoherence
- φ_{SN} nonzero **only** for **unsymmetric** state $|\alpha|^2 \neq |\beta|^2$
- γ_{SN} loss of visibility due to reduced **overlap** of ψ_{\uparrow} and ψ_{\downarrow}

	Bose et al.	massive
Particle size	1 µm	60 µm (Os.)
Separation	100 <i>µ</i> m	3 pm
Wave function	0.1 pm100 nm	3 pm
$\gamma_q < 1$ for $\Delta g < 1$	10 ⁻¹⁷ m s ⁻²	10 ⁻¹³ m s ⁻²
γ _{SN} (sym./unsym.)	10 ⁻⁶ / $\mathcal{O}(1)$	$\mathcal{O}(10)/\mathcal{O}(1)$
Phase $\varphi_{\rm SN}$	$-\mathcal{O}(1)$	$-\mathcal{O}(1)$

THANK YOU!

QUESTIONS?

LAYOUT BASED ON MTHEME BY M. VOGELGESANG @ ① ③

ADDITIONAL SLIDES

VOLUME 47, NUMBER 14	PHYSICAL REVIEW LETTERS	5 October 1981			
Indirect Evidence for Quantum Gravity					
	Don N. Page				
	and				
	C. D. Geilker				
An experime vity, the semi the hypothesis have the gravi	ent gave results inconsistent with the simplest alternative to classical Einstein equations. This evidence supports (but do that a consistent theory of gravity coupled to quantized mati- tational field quantized.	quantum gra- es not prove) er should also			

Quantum decision process: measurement of state $\frac{1}{\sqrt{2}}(|\psi\rangle + |\chi\rangle)$ used to place a macroscopic mass into opositions x_1 or x_2 .

no collapse interpretation:

System is in state $\frac{1}{\sqrt{2}}(|\psi\rangle \otimes |x_1\rangle + |\chi\rangle \otimes |x_2\rangle)$ and gravitates towards $\overline{x} = \frac{x_1 + x_2}{2} \Rightarrow$ not observed

• instantaneous collapse (Copenhagen interpretation): violates $\nabla^{\mu}G_{\mu\nu} = 0$

\Rightarrow no obvious problem with non-instantaneous reduction

Claim: any deterministic nonlinearity in the Schrödinger equation leads to the possibility to send faster than light signals (Gisin, 1989)

• E.g. entangled spin-
$$\frac{1}{2}$$
 particles:

$$\frac{1}{\sqrt{2}} (|\uparrow\rangle_A |\downarrow\rangle_B + |\downarrow\rangle_A |\uparrow\rangle_A) = \frac{1}{\sqrt{2}} (|+\rangle_A |+\rangle_B - |-\rangle_A |-\rangle_B)$$

where $|\pm\rangle = \frac{1}{\sqrt{2}}$ ($|\uparrow\rangle \pm |\downarrow\rangle$) are the σ_x eigenstates

• Measuring in σ_z or σ_x basis results in same density matrix after tracing over possible outcomes $|\uparrow\rangle_B$ and $|\downarrow\rangle_B$ or $|+\rangle_B$ and $|-\rangle_B$:

$$\hat{\rho}_{A} = \frac{1}{2} |\uparrow\rangle\langle\uparrow| + \frac{1}{2} |\downarrow\rangle\langle\downarrow| = \frac{1}{2} |+\rangle\langle+| + \frac{1}{2} |-\rangle\langle-|$$

equivalent mixtures (measurement at A independent of basis B) **remain equivalent** in a **linear** theory

SUPERLUMINAL SIGNALLING (II)

 Semiclassical gravity: assume spin of particle A becomes entangled with its position (e.g. in magnetic field gradient)

$$|\uparrow
angle \ o |\uparrow
angle \otimes |z_{\uparrow}(t)
angle \,, \qquad |\downarrow
angle \ o |\downarrow
angle \otimes |z_{\downarrow}(t)
angle$$

• However in superposition states $|\pm\rangle$

$$|\pm
angle=rac{1}{\sqrt{2}}\left(|\!\uparrow
angle\!\pm|\!\downarrow
angle
ight)\ o\ rac{1}{\sqrt{2}}\left(|\!\uparrow
angle\!\otimes|\widetilde{z}_{\uparrow}(t)
angle\!\pm|\!\downarrow
angle\!\otimes|\widetilde{z}_{\downarrow}(t)
angle
ight)$$

with $\widetilde{z}_{\uparrow\downarrow}(t) \approx z_{\uparrow\downarrow}(t) \pm \frac{Gm}{2} \int_0^t dt' \int_0^{t'} dt'' |z_{\uparrow}(t'') - z_{\downarrow}(t'')|^{-2}$

 \Rightarrow measurement outcomes at A **depend** on choice of basis at B

COLLAPSE MODELS

 Usual dogma: stochastic nonlinearity avoids superluminal signalling. Evolution of density matrix remains linear.

$$\frac{d}{dt}\hat{\rho} = -\frac{i}{\hbar}[\hat{H},\hat{\rho}] - \frac{\lambda}{2}\int d^{3}x \int d^{3}y \,\mathcal{G}(\mathbf{x}-\mathbf{y})\left[\hat{m}(\mathbf{x}),\left[\hat{m}(\mathbf{y}),\hat{\rho}\right]\right]$$

- ► Source of stochastic nonlinearity unknown ⇒ gravity?
- ▶ Diósi-Penrose: $\mathcal{G}(\mathbf{x}) = G/\hbar |\mathbf{x}|^{-1} \Rightarrow$ collapse rate ~ self-energy:

$$t_C \approx \frac{\hbar R_0}{G m^2}$$

▶ Needs to be regulated: **coarse graining** with length scale R_0 ⇒ instantaneous collapse only a good approximation above R_0

SUPERLUMINAL SIGNALLING (III)

Need to distinguish between $z_{\uparrow\downarrow}(t)$ and $\tilde{z}_{\uparrow\downarrow}(t) = z_{\uparrow\downarrow}(t) + \Delta z$

- Spatial resolution $\lambda \Rightarrow \text{detection time } t_D \approx 2\Delta z \sqrt{\frac{\lambda}{Gm}}$
- Uncertainty $\delta z \, \delta p_z \approx \hbar$ and $\lambda < \Delta z$ implies

$$\lambda > \delta z + \frac{t_D}{m} \, \delta p_z > \sqrt{\frac{\hbar t_D}{m}} > \left(\frac{\hbar^2 \, \lambda^3}{G \, m^3}\right)^{1/4} \quad \Leftrightarrow \quad \lambda > \frac{\hbar^2}{G \, m^3}$$

► No collapse before separation:

$$t_C^2 \approx \frac{\hbar^2 R_0^2}{G^2 m^4} > t_D^2 > \frac{\lambda^3}{Gm} \qquad \Leftrightarrow \qquad \frac{\hbar^2}{G m^3} > \frac{\lambda^3}{R_0^2}$$

► Both conditions combined require $\lambda < R_0$

What is the **electric** field of a charged particle in a superposition?

- \Rightarrow field becomes entangled to particle state: $|\psi\rangle \otimes |E_{\psi}\rangle + |\chi\rangle \otimes |E_{\chi}\rangle$
- Evolves in time: $|\psi(t)\rangle \otimes |E_{\psi}(t)\rangle + |\chi(t)\rangle \otimes |E_{\chi}(t)\rangle$
- ► Test particle position gets entangled as well: $|\psi(t)\rangle\otimes |E_{\psi}(t)\rangle\otimes |x_{\text{TP}}[E_{\psi}(t)]\rangle + |\chi(t)\rangle\otimes |E_{\chi}(t)\rangle\otimes |x_{\text{TP}}[E_{\chi}(t)]\rangle$
- ► Interference terms at location *x*: $2P(t,x) = |\psi(t,x)|^2 + |\chi(t,x)|^2 + \psi^*(t,x)\chi(t,x) + \psi(t,x)\chi^*(t,x)$
- \Rightarrow no need for QED but accounts for "quantumness" of the field

In analogy to electrodynamics: $|\psi\rangle \otimes |G_{\psi}\rangle + |\chi\rangle \otimes |G_{\chi}\rangle$ \Rightarrow superposition of two spacetimes

Incompatible with spacetime curvature:

- There is no well defined time translation operator in a superposition of spacetimes
- State $|\psi\rangle$ will evolve according to the Schrödinger equation in spacetime $|G_{\psi}\rangle$, whereas $|\chi\rangle$ evolves in spacetime $|G_{\chi}\rangle$
- How to identify points in different spacetimes?
 (e.g. for performing an interference experiment)

The Schrödinger-Newton equation can be seen as...

► Hartree approximation $\Psi_N = \psi \otimes \psi \otimes \cdots \otimes \psi$ for gravitational interaction potential (e.g. gravitating Bose-Einstein condensate)

$$V = \sum_{i \neq j} -\frac{Gm^2}{\left|\mathbf{x}_i - \mathbf{x}_j\right|}$$

► Nonrelativistic (c → ∞) limit of the classical Einstein-Klein-Gordon (or Einstein-Dirac) equation

$$\varphi \sim e^{imc^2 t/\hbar} \left(\psi + \mathcal{O}(c^{-2}) \right)$$

 Supposed nonrelativistic approximation of a quantum field gravitating according to the semiclassical Einstein equations Realistic systems for testing SN are **not** single particles:

$$i\hbar\dot{\Psi}_{N}(\mathbf{r}^{N}) = \left[-\sum_{i=1}^{N} \frac{\hbar^{2}}{2m_{i}} \Delta_{\mathbf{r}_{i}} + V_{\text{linear}}(\mathbf{r}^{N}) + V_{\text{G}}[\Psi_{N}(\mathbf{r}^{N})]\right] \Psi_{N}(\mathbf{r}^{N})$$
$$V_{\text{G}}[\Psi_{N}(\mathbf{r}^{N})] = -G \sum_{i=1}^{N} \sum_{j=1}^{N} m_{i}m_{j} \int \frac{\left|\Psi_{N}(\mathbf{r}'^{N})\right|^{2}}{\left|\mathbf{r}_{i} - \mathbf{r}'_{j}\right|} \, \mathrm{d}V'^{N}$$

Centre of mass equation (**approx.**), separation $\Psi_N = \psi \otimes \chi_{N-1}$:

$$i\hbar \dot{\psi}(t, \mathbf{r}) = \left(-\frac{\hbar^2}{2M} \nabla^2 + V_{\text{lin.}}^{\text{ext.}} - G \int d^3 r' |\psi(t, \mathbf{r}')|^2 I_{\rho}(\mathbf{r} - \mathbf{r}') \right) \psi(t, \mathbf{r})$$
$$I_{\rho}(\mathbf{d}) = \int d^3 x d^3 y \frac{\rho(\mathbf{x})\rho(\mathbf{y} - \mathbf{d})}{|\mathbf{x} - \mathbf{y}|} \quad (\text{where } \rho \text{ is given by } |\chi_{N-1}|^2)$$

SN DYNAMICS: INHIBITION OF FREE EXPANSION

wave function \ll particle size $\Rightarrow \rho \approx \delta(\mathbf{r}_{cm}) \Rightarrow I_{\rho}(d) \approx 1/|d|$:

$$\mathrm{i}\hbar\,\dot{\psi}(t,\mathbf{r}) = \left(-\frac{\hbar^2}{2m}\nabla^2 - Gm^2\int\mathrm{d}^3r'\,\frac{|\psi(t,\mathbf{r}')|^2}{|\mathbf{r}-\mathbf{r}'|}\right)\psi(t,\mathbf{r})$$

Problem: time scale (order of hours!)

FREE EXPANSION SN TEST

green line intuitively: free wave function would have increased by 25% but maintains its width due to self-gravity

INHIBITION OF FREE EXPANSION, SCALING LAW

In the wide wave function limit: one-particle SN equation

- ► For a mass of ~ 10¹⁰ u and a wave packet size of about 500 nm a significant deviation is visible after several *hours*
- ► Scaling law: with $\psi(t, \mathbf{x})$ for mass m, a solution for mass μm is obtained as $\mu^{9/2}\psi(\mu^5 t, \mu^3 \mathbf{x}) \Rightarrow \text{ e.g. } 10^{11} \text{ u at } 0.5 \text{ nm would}$ show an effect in less than a second **but** must remain in wide wave function regime (Os at 10^{10} u has 100 nm diameter)

Assumption: a Gaussian wave packet stays approximately Gaussian

The free spreading of a Gaussian wave packet and spherical particle can be approximated by a third order ODE for the width $u(t) = \langle r^2 \rangle(t)$:

$$\ddot{u}(t) = -3\omega_{\rm SN}^2 f(u(t)) \dot{u}(t)$$

with $\omega_{\rm SN} = \sqrt{Gm/R^3} \sim \sqrt{G\rho}$, initial conditions

$$u(0) = u_0$$
, $\dot{u}(0) = 0$, $\ddot{u}(0) = \frac{9\hbar^2}{2m^2 u_0} - \omega_{SN}^2 g(u_0) u_0$,

and the functions (with u in units of R)

$$f(u) = \operatorname{erf}\left(\sqrt{\frac{3}{u}}\right) + \sqrt{\frac{u}{3\pi}}\left(u - \frac{7}{2} - \frac{324 - 162u - 35u^4 + 70u^5}{70u^4}e^{-3/u}\right)$$
$$g(u) = \operatorname{erf}\left(\sqrt{\frac{3}{u}}\right) + \sqrt{\frac{u}{3\pi}}\left(\frac{2}{3}u - 3 + \frac{486 + 105u^3 - 70u^4}{105u^3}e^{-3/u}\right)$$

$$u(t)\approx u_0+\frac{1}{2}\ddot{u}(0)t^2$$

- exact without self-gravity term
- deviates from usual evolution by dependence on $g(u_0)$ in

$$\ddot{u}(0) = \frac{9\hbar^2}{2m^2 u_0} - \omega_{SN}^2 g(u_0) u_0$$

- stationarity condition ü(0) = 0 yields (pessimistic) estimate for the scales where self-gravity becomes important
- Assume **osmium** particle initially trapped with ω_0 \Rightarrow characteristic time scale $\tau = \omega_0^{-1}$, $u_0 = 3\hbar \tau/m$
- $\ddot{u}(0) = 0$ determines characteristic (m, τ) graph
- ▶ limit $g(u) \rightarrow 1$ for $u \rightarrow 0$ yields $\tau(m) = \text{const.}$ for large m

For narrower wave functions (here $O(10 \text{ nm}) \lesssim \text{particle size}$): approximate ODE (assume: Gaussian wave packet remains Gaussian)

 \Rightarrow 1% deviation after 200 s \rightarrow maybe in space?

SN EQUATION FOR LOCALISED OBJECTS

wave function \gg particle size \Rightarrow to $\mathcal{O}(|\mathbf{r} - \mathbf{r}'|^2)$, $I''(\mathbf{0}) = m\omega^2 \mathbb{1}$:

$$i\hbar \dot{\psi}(t,\mathbf{r}) = \left(-\frac{\hbar^2}{2m}\nabla^2 + \frac{m\omega^2}{2}\left((\mathbf{r} - \langle \mathbf{r} \rangle)^2 + \langle \mathbf{r}^2 \rangle - \langle \mathbf{r} \rangle^2\right)\right)\psi(t,\mathbf{r})$$

Effects in optomechanical systems:

Yang et al. PRL 110 (2013) 170401

A.G. et al. PRD 93 (2016) 096003

LOCALISED STATES IN CRYSTALLINE MATTER

- the relevant radius is σ (localisation of the nuclei)
- effective mass density $\rho_{\rm nucl}$ ~ $10^3 \rho$

•
$$\omega_{SN} = \sqrt{\frac{Gm_{atom}}{\sigma^3}} \sim \sqrt{G\rho_{nucl}}$$

~ 1 Hz for osmium

Need ground state cooling for: mass $\sim 10^{15}$ u (μ m sized) particle trapped at $\mathcal{O}(10$ Hz)

$$\omega_{\rm SN} = \sqrt{\frac{Gm_{\rm atom}}{\sigma^3}}$$

Material	m _{atom} / u	ρ/gcm ⁻³	σ/pm	$\omega_{\rm SN}$ / s ⁻¹
Silicon	28.086	2.329	6.96	0.096
Tungsten	183.84	19.30	3.48	0.695
Osmium	190.23	22.57	2.77	0.996
Gold	196.97	19.32	4.66	0.464

Note: ω_{SN} enters **squared** in the evolution equation \Rightarrow osmium two orders of magnitude better than silicon

EXPERIMENTAL SETUP (PROPOSAL)

IS SEMICLASSICAL GRAVITY + DECOHERENCE ENOUGH?

- Decoherence yields classical mixtures but no collapse
- Collapse models describe nonlinear dynamics, and could be based on gravity but with unclear relation to GR
- Semiclassical gravity by itself does not explain collapse:
 - \cdot stationary states can be very distinct from likely position eigenstates
 - \cdot single particle SN dynamics has runaway probability
 - · deterministic (no Born rule probabilities)

...but how about decoherence and semiclassical gravity combined?

- \checkmark evolution into classical states from decoherence
- ✓ nonlinearity from gravity
- ? stochastic decoherence source? (dark matter? gravitational waves?) \rightarrow can Born rule be derived from this?

At the lowest order, gravity yields a phase $\varphi \sim \frac{G m_1 m_2 \Delta t}{\hbar \Delta x}$

Quantised gravity:

 $(|L\rangle_1 + |R\rangle_1) \otimes (|L\rangle_2 + |R\rangle_2)$ $\rightarrow |L\rangle_1 |L\rangle_2 + |L\rangle_1 |R\rangle_2 + \mathbf{e}^{\mathbf{i}\varphi} |R\rangle_1 |L\rangle_2 + |R\rangle_1 |R\rangle_2$

$$\mathcal{W} = \left| \left\langle \sigma_x^{(1)} \otimes \sigma_z^{(2)} \right\rangle + \left\langle \sigma_y^{(1)} \otimes \sigma_y^{(2)} \right\rangle \right| = \left| 1 + e^{i\varphi} \right| \le 2$$

Schrödinger-Newton equation:

 $(|L\rangle_{1}+|R\rangle_{1}) \otimes (|L\rangle_{1}+|R\rangle_{1})$ $\rightarrow \mathbf{e}^{\mathbf{i}\varphi/2} |L\rangle_{1} |L\rangle_{2}+|L\rangle_{1} |R\rangle_{2}+\mathbf{e}^{\mathbf{i}\varphi} |R\rangle_{1} |L\rangle_{2}+\mathbf{e}^{\mathbf{i}\varphi/2} |R\rangle_{1} |R\rangle_{2}$ $= (|L\rangle_{1}+\mathbf{e}^{\mathbf{i}\varphi/2} |R\rangle_{1}) \otimes (\mathbf{e}^{\mathbf{i}\varphi/2} |L\rangle_{2}+|R\rangle_{2})$

$$\mathcal{W} = \left| \left\langle \sigma_x^{(1)} \otimes \sigma_z^{(2)} \right\rangle + \left\langle \sigma_y^{(1)} \otimes \sigma_y^{(2)} \right\rangle \right| = \frac{1}{2} \left| 1 + e^{i\varphi} \right| \le 1$$