TESTING FUNDAMENTALLY SEMICLASSICAL GRAVITY

André Großardt

Friedrich Schiller University Jena, Germany

2nd EPS conference on gravitation: Measuring Gravity - July 2021

QUANTUM MATTER AS A SOURCE MASS FOR GRAVITY

Does gravity need to be quantised?
Is curvature of spacetime a field living on spacetime?

FROM QUANTUM TO CLASSICAL MASS SCALES

NONRELATIVISTIC LIMIT OF SEMICLASSICAL GRAVITY

Semiclassical gravity as a fundamental equation:

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu v}=\frac{8 \pi G}{c^{4}}\left\langle\hat{T}_{\mu v}\right\rangle
$$

Weak-field nonrelativistic limit:
$\nabla^{2} V=4 \pi G\langle\psi| \hat{\rho}|\psi\rangle \quad$ with $\quad \hat{\rho}=m \hat{\psi}^{\dagger} \hat{\psi}$
Results in the Schrödinger-Newton equation (here for one particle)

$$
i \hbar \dot{\psi}(t, \mathbf{r})=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}-G m^{2} \int \mathrm{~d}^{3} r^{\prime} \frac{\left|\psi\left(t, \mathbf{r}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right) \psi(t, \mathbf{r})
$$

\Rightarrow Nonlinear Schrödinger equation
\Rightarrow yields gravitational self-interaction of the wave function

EXPERIMENTAL TESTS OF SEMICLASSICAL GRAVITY

Free spreading of the wave function (interferometric tests):

$\rho=4 \pi r^{2}|\psi|^{2}$ for masses of $7 \times 10^{9} u$

and $10^{10} \mathrm{u}$

Effects in optomechanical systems:

Yang et al. PRL 110 (2013) 170401

A.G. et al. PRD 93 (2016) 096003

CAN GRAVITY ENTANGLE TWO MASSES?

Two adjacent Stern-Gerlach interferometers
Bose et al.: PRL 119 (2017) 240401

WITNESSING ENTANGLEMENT VIA SPIN

Gravitational phase shift

$$
|\Psi\rangle=\frac{\mathrm{e}^{\mathrm{i} \varphi_{\uparrow \uparrow}}}{2}|\uparrow \uparrow\rangle+\frac{\mathrm{e}^{\mathrm{i} \varphi_{\uparrow \downarrow}}}{2}|\uparrow \downarrow\rangle+\frac{\mathrm{e}^{\mathrm{i} \varphi_{\downarrow \uparrow}}}{2}|\downarrow \uparrow\rangle+\frac{\mathrm{e}^{\mathrm{i} \varphi_{\downarrow \downarrow}}}{2}|\downarrow \downarrow\rangle
$$

Simplest case: $a \ll \Delta x_{r, s,}, T_{\text {acc }} \ll T \Rightarrow \varphi_{\downarrow \uparrow}$ only contribution
Semiclassical gravity: $|\Psi\rangle=\frac{1}{2}\left(|\uparrow\rangle+\mathrm{e}^{\mathrm{i} \varphi_{\downarrow}}|\downarrow\rangle\right) \otimes\left(\mathrm{e}^{\mathrm{i} \varphi_{\uparrow}}|\uparrow\rangle+|\downarrow\rangle\right)$
Entanglement witness (Bose et al.):

$$
\mathcal{W}=\left|\left\langle\hat{\sigma}_{x}^{(r)} \otimes \hat{\sigma}_{z}^{(s)}\right\rangle+\left\langle\hat{\sigma}_{y}^{(r)} \otimes \hat{\sigma}_{y}^{(s)}\right\rangle\right|
$$

$0 \leq \mathcal{W} \leq 2$ for quantised gravity but
$0 \leq \mathcal{W} \leq 1$ for semiclassical gravity.

EFFECT OF RELATIVE ACCELERATION

$$
\frac{G M_{\text {source }}}{r^{2}} \sim \frac{(1 \mu \mathrm{~m})^{3}}{(100 \mu \mathrm{~m})^{2}}=\frac{(1 \mathrm{~cm})^{3}}{(100 \mathrm{~m})^{2}}
$$

Phases with external acceleration (here for $|\uparrow \uparrow\rangle$):
$\varphi_{\uparrow \uparrow}=\frac{G m_{r} m_{s}}{\hbar} \int_{0}^{t} \frac{d t^{\prime}}{\left|\mathbf{r}_{\uparrow}\left(t^{\prime}\right)-\mathbf{s}_{\uparrow}\left(t^{\prime}\right)\right|}+\frac{1}{\hbar} \int_{0}^{t} d t^{\prime} \mathbf{g}\left(t^{\prime}\right) \cdot\left(m_{r} \mathbf{r}_{\uparrow}\left(t^{\prime}\right)+m_{s} \mathbf{s}_{\uparrow}\left(t^{\prime}\right)\right)$
results in additional phase:

$$
\varphi_{r, s}^{\mathrm{ext}}=m_{r, s} \varphi_{0}^{\mathrm{ext}} \pm \frac{\mu_{\mathrm{B}} \partial_{x} B T_{\mathrm{acc}}^{2}}{4 \hbar} \int_{T_{\mathrm{acc}}}^{T+T_{\mathrm{acc}}} \mathrm{dt} g_{x}(t)
$$

White Gaussian noise: $\left\langle g_{x}(0) g_{x}(t)\right\rangle=\int \frac{d \omega}{2 \pi} S(\omega) \mathrm{e}^{-\mathrm{i} \omega t}$ and $S(\omega) \equiv S_{0}$

$$
\Rightarrow \text { mixed state } \hat{\rho}=\int \mathrm{d} \varphi^{\text {ext }} P\left(\varphi^{\text {ext }}\right)\left|\Psi\left(\varphi^{\text {ext }}\right)\right\rangle\left\langle\Psi\left(\varphi^{\text {ext }}\right)\right|
$$

ENTANGLEMENT WITNESS WITH NOISE

We find the expectation values (assuming $m_{r} \approx m_{s}$)

$$
\begin{aligned}
\left\langle\sigma_{x}^{(r)} \otimes \sigma_{z}^{(s)}\right\rangle & =\frac{\mathrm{e}^{-\gamma}}{2}(\cos (\Delta \varphi+\delta x)-\cos (\delta \varphi-\delta \chi)) \\
\left\langle\sigma_{y}^{(r)} \otimes \sigma_{y}^{(s)}\right\rangle & =\frac{1}{2}\left(\cos (\Delta \varphi-\delta \varphi)-\mathrm{e}^{-4 \gamma} \cos (2 \delta \chi)\right)
\end{aligned}
$$

with

$$
\gamma=\frac{m_{r} m_{s} \Delta x^{2} T S_{0}}{8 \hbar^{2}}
$$

$\Delta \varphi \approx \frac{G m_{r} m_{s} T}{\hbar(d-\Delta x)}-\frac{G m_{r} m_{s} T}{\hbar d}, \quad \delta \varphi \approx \frac{G m_{r} m_{s} \tau}{\hbar(d+\Delta x)}-\frac{G m_{r} m_{s} \tau}{\hbar d}, \quad \delta x \approx \frac{G m_{r} m_{s} \tau \delta x}{\hbar d^{2}}$
Implies for the entanglement witness: $\mathcal{W} \leq \frac{1}{2}+\mathrm{e}^{-\gamma}+\frac{\mathrm{e}^{-4 \gamma}}{2}$

$$
\mathcal{W}>1 \quad \Leftrightarrow \quad y \lesssim 0.75 \quad \Leftrightarrow \quad S_{0} \lesssim \frac{6 \hbar^{2}}{m_{r} m_{S} T \Delta x^{2}}
$$

LIMITATIONS FROM CASIMIR-POLDER FORCES

Gravitational energy $\sim 1 / a \gg$ Casimir-Polder energy $\sim 1 / a^{7}$

$$
\Rightarrow \quad a \gg \frac{1}{2 \sqrt{\pi}}\left(\frac{3 \alpha}{\rho} \sqrt{\frac{23 \hbar c}{G}}\right)^{1 / 3}
$$

With $G m_{r} m_{s} T \sim \hbar a$ and $\Delta x \gtrsim a$ for a detectable phase one finds the noise limit:

$$
S_{0} \lesssim \frac{8 \hbar G}{3 \pi a^{3}} \ll \frac{64 \rho}{9 \alpha} \sqrt{\frac{\pi \hbar G^{3}}{23 c}}
$$

depending only on material, with $\alpha \gtrsim 0.35$ and $\rho \lesssim 23 \mathrm{~g} / \mathrm{cm}^{3}$

$$
\Rightarrow \quad \sqrt{S_{0}} \ll 0.24 \mathrm{fm} \mathrm{~s}^{-2} / \sqrt{\mathrm{Hz}}
$$

LIMITATIONS FROM DECOHERENCE

For unequal $M \geq m$ with $\Delta x_{r} \approx \Delta x_{s} \approx \Delta x$ we find $\mathcal{W}>1$ for $S_{0} \lesssim \frac{\hbar^{2}}{M^{2} \tau \Delta x^{2}}$ The closest approach is the radius of the larger particle $R \approx a \approx \Delta x$

$$
\Rightarrow \quad \sqrt{S_{0}} \lesssim \frac{\hbar}{\rho R^{4} \sqrt{\tau}}
$$

Observable phase ($\Delta \varphi \sim \pi$): GmMT $\sim \hbar a \sim \hbar R$
$T<$ decoherence from gas collisions $T_{\text {dec }} \sim \sqrt{k T m_{\text {gas }}} /\left(P R^{2}\right)$:

$$
R^{4} \sqrt{T} \sim \frac{M^{2} T}{\rho^{2} R^{2} \sqrt{\tau}}>\frac{m M T}{\rho^{2} R^{2} \sqrt{\tau}}>\frac{\hbar}{G \rho^{2} R \sqrt{T_{\text {dec }}}} \sim \frac{\hbar \sqrt{P}}{G \rho^{2}}\left(k T m_{\text {gas }}\right)^{-1 / 4}
$$

$$
\Rightarrow \quad \sqrt{S_{0}}<\frac{8 G \rho}{9 \sqrt{\zeta(3 / 2) n_{\text {gas }}}}\left(\frac{m_{\text {gas }}}{3 k T}\right)^{1 / 4}
$$

ACCLERATION NOISE LIMITS

	Bose et al.	interstellar
Material	diamond	osmium
Density	$3.5 \mathrm{~g} / \mathrm{cm}^{3}$	$23 \mathrm{~g} / \mathrm{cm}^{3}$
Medium (gas)	air	hydrogen
Temperature	150 mK	$1 \mu \mathrm{~K}$
Pressure	$10^{-15} \mathrm{~Pa}$	$10^{-23} \mathrm{~Pa}$
Particle density	$500 / \mathrm{cm}^{3}$	$1 / \mathrm{cm}^{3}$
$\sqrt{S_{0}}<$	$1.4 \mathrm{pm} \mathrm{s}^{-2} / \sqrt{\mathrm{Hz}}$	$2.1 \mathrm{~nm} \mathrm{~s}^{-2} / \sqrt{\mathrm{Hz}}$

- <<nano-g in drop tower experiments?
- active mitigation or precise tracking of $g_{x}(t)$?
- space? ($\sqrt{S_{0}} \sim 5 \mathrm{fm} \mathrm{s}^{-2} / \sqrt{\mathrm{Hz}}$ in LISA Pathfinder)

FALSIFICATION POWER OF EXPERIMENTS

What can different experiments teach us about gravity?

FALSIFICATION POWER OF EXPERIMENTS

TESTING SELF-GRAVITY WITH SPIN

If gravitational spin-entanglement can be detected over 100μ m... can a self-gravitational effect on spin be detected?

THEORETICAL MODEL

Spin superposition state (initially Gaussian in space):

$$
|\psi(t)\rangle=\alpha|\uparrow\rangle \otimes \int d^{3} r \psi_{\uparrow}(t, \mathbf{r})|\mathbf{r}\rangle+\beta|\downarrow\rangle \otimes \int d^{3} r \psi_{\downarrow}(t, \mathbf{r})|\mathbf{r}\rangle
$$

$$
\hat{H}=\hat{\imath} \otimes\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\text {ext }}+|\alpha|^{2} U_{\uparrow}+|\beta|^{2} U_{\downarrow}\right)+\hat{\sigma}_{z} \otimes V_{\text {acc }}
$$

- $U_{\uparrow \downarrow}$ depend on ψ_{\uparrow} and $\psi_{\downarrow} \Rightarrow$ nonseparable Schrödinger eq.
- Can be made linear and separable by perturbative approach
- Homogeneous $V_{\text {ext }}, V_{\text {acc }}$ only yield phase + displacement
- Both the wave function width and split of classical trajectories can be in three regimes defined by atomic scale \sim pm and particle size $\sim \mu \mathrm{m}$

SPIN EXPECTATION VALUE (PRELIMINARY!)

$$
\left\langle\hat{\sigma}_{x}\right\rangle=\mathrm{e}^{-\gamma_{S N}-\gamma_{g}} \cos \left(\varphi_{\alpha \beta}+\varphi_{g}+\varphi_{S N}\right)
$$

- $\varphi_{\alpha \beta}$: initial relative phase between α and β
- $\varphi_{g} \sim\langle g\rangle$ COW phase, $\gamma_{g} \sim \operatorname{var}(g)$ acceleration noise decoherence
- $\varphi_{S N}$ nonzero only for unsymmetric state $|\alpha|^{2} \neq|\beta|^{2}$
- $\gamma_{S N}$ loss of visibility due to reduced overlap of ψ_{\uparrow} and ψ_{\downarrow}

	Bose et al.	massive
Particle size	$1 \mu \mathrm{~m}$	$60 \mu \mathrm{~m}($ Os. $)$
Separation	$100 \mu \mathrm{~m}$	3 pm
Wave function	$0.1 \mathrm{pm} \ldots 100 \mathrm{~nm}$	3 pm
$\gamma_{g}<1$ for $\Delta g<$	$10^{-17} \mathrm{~m} \mathrm{~s}^{-2}$	$10^{-13} \mathrm{~m} \mathrm{~s}^{-2}$
$\gamma_{S N}$ (sym./unsym.)	$10^{-6} / \mathcal{O}(1)$	$\mathcal{O}(10) / \mathcal{O}(1)$
Phase $\varphi_{S N}$	$-\mathcal{O}(1)$	$-\mathcal{O}(1)$

THANK You!

Questions?

ADDITIONAL SLIDES

PAGE-GEILKER "EXPERIMENT"

Indirect Evidence for Quantum Gravity

$$
\begin{aligned}
& \text { Don N. Page } \\
& \text { and } \\
& \text { C. D. Geilker }
\end{aligned}
$$

An experiment gave results inconsistent with the simplest alternative to quantum gravity, the semiclassical Einstein equations. This evidence supports (but does not prove) the hypothesis that a consistent theory of gravity coupled to quantized matter should also have the gravitational field quantized.

Quantum decision process: measuement of state $\frac{1}{\sqrt{2}}(|\psi\rangle+|x\rangle)$ used to place a macroscopic mass into opositions x_{1} or x_{2}.

- no collapse interpretation:

System is in state $\frac{1}{\sqrt{2}}\left(|\psi\rangle \otimes\left|x_{1}\right\rangle+|X\rangle \otimes\left|x_{2}\right\rangle\right)$ and gravitates towards $\bar{x}=\frac{x_{1}+x_{2}}{2} \Rightarrow$ not observed

- instantaneous collapse (Copenhagen interpretation):
violates $\nabla^{\mu} G_{\mu v}=0$
\Rightarrow no obvious problem with non-instantaneous reduction

SUPERLUMINAL SIGNALLING (I)

Claim: any deterministic nonlinearity in the Schrödinger equation leads to the possibility to send faster than light signals (Gisin, 1989)

- E.g. entangled spin- $\frac{1}{2}$ particles:

$$
\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{A}|\downarrow\rangle_{B}+|\downarrow\rangle_{A}|\uparrow\rangle_{A}\right)=\frac{1}{\sqrt{2}}\left(|+\rangle_{A}|+\rangle_{B}-|-\rangle_{A}|-\rangle_{B}\right)
$$

where $| \pm\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle \pm|\downarrow\rangle)$ are the σ_{x} eigenstates

- Measuring in σ_{z} or σ_{x} basis results in same density matrix after tracing over possible outcomes $|\uparrow\rangle_{B}$ and $|\downarrow\rangle_{B}$ or $|+\rangle_{B}$ and $|-\rangle_{B}$:

$$
\hat{\rho}_{A}=\frac{1}{2}|\uparrow\rangle\langle\uparrow|+\frac{1}{2}|\downarrow\rangle\langle\downarrow|=\frac{1}{2}|+\rangle\langle+|+\frac{1}{2}|-\rangle\langle-|
$$

equivalent mixtures (measurement at A independent of basis B) remain equivalent in a linear theory

SUPERLUMINAL SIGNALLING (II)

- Semiclassical gravity: assume spin of particle A becomes entangled with its position (e.g. in magnetic field gradient)

$$
|\uparrow\rangle \rightarrow|\uparrow\rangle \otimes\left|z_{\uparrow}(t)\right\rangle, \quad|\downarrow\rangle \rightarrow|\downarrow\rangle \otimes\left|z_{\downarrow}(t)\right\rangle
$$

- However in superposition states $| \pm\rangle$
with $\tilde{z}_{\uparrow \downarrow}(t) \approx z_{\uparrow \downarrow}(t) \pm \frac{G m}{2} \int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} d t^{\prime \prime}\left|z_{\uparrow}\left(t^{\prime \prime}\right)-z_{\downarrow}\left(t^{\prime \prime}\right)\right|^{-2}$
\Rightarrow measurement outcomes at A depend on choice of basis at B

COLLAPSE MODELS

- Usual dogma: stochastic nonlinearity avoids superluminal signalling. Evolution of density matrix remains linear.

$$
\frac{d}{d t} \hat{\rho}=-\frac{i}{\hbar}[\hat{H}, \hat{\rho}]-\frac{\lambda}{2} \int d^{3} x \int d^{3} y \mathcal{G}(x-y)[\hat{m}(x),[\hat{m}(y), \hat{\rho}]]
$$

- Source of stochastic nonlinearity unknown \Rightarrow gravity?
- Diósi-Penrose: $\mathcal{G}(x)=G / \hbar|x|^{-1} \Rightarrow$ collapse rate \sim self-energy:

$$
t_{c} \approx \frac{\hbar R_{0}}{G m^{2}}
$$

- Needs to be regulated: coarse graining with length scale R_{0} \Rightarrow instantaneous collapse only a good approximation above R_{0}

SUPERLUMINAL SIGNALLING (III)

Need to distinguish between $z_{\uparrow \downarrow}(t)$ and $\tilde{z}_{\uparrow \downarrow}(t)=z_{\uparrow \downarrow}(t)+\Delta z$

- Spatial resolution $\lambda \Rightarrow$ detection time $t_{D} \approx 2 \Delta z \sqrt{\frac{\lambda}{G m}}$
- Uncertainty $\delta z \delta p_{z} \approx \hbar$ and $\lambda<\Delta z$ implies

$$
\lambda>\delta z+\frac{t_{D}}{m} \delta p_{z}>\sqrt{\frac{\hbar t_{D}}{m}}>\left(\frac{\hbar^{2} \lambda^{3}}{G m^{3}}\right)^{1 / 4} \Leftrightarrow \lambda>\frac{\hbar^{2}}{G m^{3}}
$$

- No collapse before separation:

$$
t_{C}^{2} \approx \frac{\hbar^{2} R_{0}^{2}}{G^{2} m^{4}}>t_{D}^{2}>\frac{\lambda^{3}}{G m} \quad \Leftrightarrow \quad \frac{\hbar^{2}}{G m^{3}}>\frac{\lambda^{3}}{R_{0}^{2}}
$$

- Both conditions combined require $\lambda<R_{0}$

ANALOGY TO ELECTRODYNAMICS

What is the electric field of a charged particle in a superposition?
\Rightarrow field becomes entangled to particle state: $|\psi\rangle \otimes\left|E_{\psi}\right\rangle+|\chi\rangle \otimes\left|E_{\chi}\right\rangle$

- Evolves in time: $|\psi(t)\rangle \otimes\left|E_{\psi}(t)\right\rangle+|\chi(t)\rangle \otimes\left|E_{\chi}(t)\right\rangle$
- Test particle position gets entangled as well:

$$
|\psi(t)\rangle \otimes\left|E_{\psi}(t)\right\rangle \otimes\left|x_{T P}\left[E_{\psi}(t)\right]\right\rangle+|\chi(t)\rangle \otimes\left|E_{\chi}(t)\right\rangle \otimes\left|x_{T P}\left[E_{\chi}(t)\right]\right\rangle
$$

- Interference terms at location x :

$$
2 P(t, x)=|\psi(t, x)|^{2}+|x(t, x)|^{2}+\psi^{*}(t, x) x(t, x)+\psi(t, x) x^{*}(t, x)
$$

\Rightarrow no need for QED but accounts for "quantumness" of the field

QUANTISED GRAVITY AS SOLUTION?

In analogy to electrodynamics: $|\psi\rangle \otimes\left|G_{\psi}\right\rangle+|\chi\rangle \otimes\left|G_{\chi}\right\rangle$
\Rightarrow superposition of two spacetimes

Incompatible with spacetime curvature:

- There is no well defined time translation operator in a superposition of spacetimes
- State $|\psi\rangle$ will evolve according to the Schrödinger equation in spacetime $\left|G_{\psi}\right\rangle$, whereas $|\chi\rangle$ evolves in spacetime $\left|G_{\chi}\right\rangle$
- How to identify points in different spacetimes? (e.g. for performing an interference experiment)

The Schrödinger-Newton equation can be seen as...

- Hartree approximation $\Psi_{N}=\psi \otimes \psi \otimes \cdots \otimes \psi$ for gravitational interaction potential (e.g. gravitating Bose-Einstein condensate)

$$
V=\sum_{i \neq j}-\frac{G m^{2}}{\left|\mathrm{x}_{i}-\mathrm{x}_{j}\right|}
$$

- Nonrelativistic $(c \rightarrow \infty)$ limit of the classical Einstein-Klein-Gordon (or Einstein-Dirac) equation

$$
\varphi \sim \mathrm{e}^{\mathrm{i} m c^{2} t / \hbar}\left(\psi+\mathcal{O}\left(c^{-} 2\right)\right)
$$

- Supposed nonrelativistic approximation of a quantum field gravitating according to the semiclassical Einstein equations

MANY PARTICLES TO CENTRE OF MASS

Realistic systems for testing SN are not single particles:

$$
\begin{aligned}
i \hbar \dot{\Psi}_{N}\left(\mathrm{r}^{N}\right) & =\left[-\sum_{i=1}^{N} \frac{\hbar^{2}}{2 m_{i}} \Delta_{r_{i}}+V_{\text {linear }}\left(\mathrm{r}^{N}\right)+V_{G}\left[\Psi_{N}\left(\mathrm{r}^{N}\right)\right]\right] \Psi_{N}\left(\mathrm{r}^{N}\right) \\
V_{G}\left[\Psi_{N}\left(\mathrm{r}^{N}\right)\right] & =-G \sum_{i=1}^{N} \sum_{j=1}^{N} m_{i} m_{j} \int \frac{\left|\Psi_{N}\left(\mathrm{r}^{\prime N}\right)\right|^{2}}{\left|\mathrm{r}_{i}-\mathrm{r}_{\mathrm{j}}^{\prime}\right|} d V^{\prime N}
\end{aligned}
$$

Centre of mass equation (approx.), separation $\Psi_{N}=\psi \otimes X_{N-1}$:

$$
\begin{aligned}
i \hbar \dot{\psi}(t, r) & =\left(-\frac{\hbar^{2}}{2 M} \nabla^{2}+V_{\text {lin. }}^{\text {xxt }}-G \int d^{3} r^{\prime}\left|\psi\left(t, r^{\prime}\right)\right|^{2} I_{\rho}\left(r-r^{\prime}\right)\right) \psi(t, r) \\
I_{\rho}(\mathrm{d}) & \left.=\int \mathrm{d}^{3} x \mathrm{~d}^{3} y \frac{\rho(\mathrm{x}) \rho(\mathrm{y}-\mathrm{d})}{|\mathrm{x}-\mathrm{y}|} \quad \text { (where } \rho \text { is given by }\left|x_{N-1}\right|^{2}\right)
\end{aligned}
$$

SN DYNAMICS: INHIBITION OF FREE EXPANSION

wave function \ll particle size $\Rightarrow \rho \approx \delta\left(r_{c m}\right) \Rightarrow I_{\rho}(d) \approx 1 /|d|$:

$$
i \hbar \dot{\psi}(t, r)=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}-G m^{2} \int d^{3} r^{\prime} \frac{\left|\psi\left(t, \mathbf{r}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right) \psi(t, \mathbf{r})
$$

$\rho=4 \pi r^{2}|\psi|^{2}$ for masses of $7 \times 10^{9} u$

and $10^{10} \mathrm{u}$

Problem: time scale (order of hours!)

FREE EXPANSION SN TEST

Inhibition of free expansion of wave packets:

green line intuitively: free wave function would have increased by 25% but maintains its width due to self-gravity

INHIBITION OF FREE EXPANSION, SCALING LAW

In the wide wave function limit: one-particle SN equation

$$
\rho=4 \pi r^{2}|\psi|^{2} \text { for masses of } 7 \times 10^{9} u
$$

and $10^{10} \mathrm{u}$

- For a mass of $\sim 10^{10} u$ and a wave packet size of about 500 nm a significant deviation is visible after several hours
- Scaling law: with $\psi(t, x)$ for mass m, a solution for mass $\mu \mathrm{m}$ is obtained as $\mu^{9 / 2} \psi\left(\mu^{5} t, \mu^{3} \mathbf{x}\right) \Rightarrow$ e.g. $10^{11} \mathrm{u}$ at 0.5 nm would show an effect in less than a second but must remain in wide wave function regime (Os at $10^{10} \mathrm{u}$ has 100 nm diameter)

REALISTIC MODEL FOR TIME EVOLUTION

Assumption: a Gaussian wave packet stays approximately Gaussian
The free spreading of a Gaussian wave packet and spherical particle can be approximated by a third order ODE for the width $u(t)=\left\langle r^{2}\right\rangle(t)$:

$$
\dddot{u}(t)=-3 \omega_{\text {SN }}^{2} f(u(t)) \dot{u}(t)
$$

with $\omega_{S N}=\sqrt{G m / R^{3}} \sim \sqrt{G \rho}$, initial conditions

$$
u(0)=u_{0}, \quad \dot{u}(0)=0, \quad \ddot{u}(0)=\frac{9 \hbar^{2}}{2 m^{2} u_{0}}-\omega_{S N}^{2} g\left(u_{0}\right) u_{0},
$$

and the functions (with u in units of R)

$$
\begin{aligned}
& f(u)=\operatorname{erf}\left(\sqrt{\frac{3}{u}}\right)+\sqrt{\frac{u}{3 \pi}}\left(u-\frac{7}{2}-\frac{324-162 u-35 u^{4}+70 u^{5}}{70 u^{4}} e^{-3 / u}\right) \\
& g(u)=\operatorname{erf}\left(\sqrt{\frac{3}{u}}\right)+\sqrt{\frac{u}{3 \pi}}\left(\frac{2}{3} u-3+\frac{486+105 u^{3}-70 u^{4}}{105 u^{3}} \mathrm{e}^{-3 / u}\right)
\end{aligned}
$$

SHORT TIME EXPANSION

$$
u(t) \approx u_{0}+\frac{1}{2} \ddot{u}(0) t^{2}
$$

- exact without self-gravity term
- deviates from usual evolution by dependence on $g\left(u_{0}\right)$ in

$$
\ddot{u}(0)=\frac{9 \hbar^{2}}{2 m^{2} u_{0}}-\omega_{S N}^{2} g\left(u_{0}\right) u_{0}
$$

- stationarity condition $\ddot{u}(0)=0$ yields (pessimistic) estimate for the scales where self-gravity becomes important
- Assume osmium particle initially trapped with ω_{0}
\Rightarrow characteristic time scale $\tau=\omega_{0}^{-1}, \quad u_{0}=3 \hbar \tau / \mathrm{m}$
- $\ddot{u}(0)=0$ determines characteristic (m, τ) graph
- limit $g(u) \rightarrow 1$ for $u \rightarrow 0$ yields $\tau(m)=$ const. for large m

INHIBITION OF FREE EXPANSION, NARROW WAVE FUNCTIONS

For narrower wave functions (here $\mathcal{O}(10 \mathrm{~nm}) \lesssim$ particle size): approximate ODE (assume: Gaussian wave packet remains Gaussian)

$$
\frac{d^{3}}{d t^{3}}\left\langle r^{2}\right\rangle=-3 \omega_{S N}^{2} f\left(\left\langle r^{2}\right\rangle\right) \frac{d}{d t}\left\langle r^{2}\right\rangle
$$

rel. deviation from standard Schrödinger evolution for $m=10^{9} u$ and $10^{10} u$
$\Rightarrow 1 \%$ deviation after 200 s \rightarrow maybe in space?

SN EQUATION FOR LOCALISED OBJECTS

wave function \gg particle size \Rightarrow to $\mathcal{O}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}\right), I^{\prime \prime}(0)=m \omega^{2} \mathbb{1}$:

$$
\mathrm{i} \hbar \dot{\psi}(t, \mathbf{r})=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{m \omega^{2}}{2}\left((\mathbf{r}-\langle\mathbf{r}\rangle)^{2}+\left\langle\mathbf{r}^{2}\right\rangle-\langle\mathbf{r}\rangle^{2}\right)\right) \psi(t, \mathbf{r})
$$

Effects in optomechanical systems:

LOCALISED STATES IN CRYSTALLINE MATTER

Need ground state cooling for:
mass $\sim 10^{15} \mathrm{u}$ ($\mu \mathrm{m}$ sized) particle trapped at $\mathcal{O}(10 \mathrm{~Hz})$

MATERIAL CHOICES

$$
\omega_{\mathrm{SN}}=\sqrt{\frac{G m_{\mathrm{atom}}}{\sigma^{3}}}
$$

Material	$m_{\text {atom }} / \mathrm{u}$	$\rho / \mathrm{g} \mathrm{cm}^{-3}$	σ / pm	$\omega_{\mathrm{SN}} / \mathrm{s}^{-1}$
Silicon	28.086	2.329	6.96	0.096
Tungsten	183.84	19.30	3.48	0.695
Osmium	190.23	22.57	2.77	0.996
Gold	196.97	19.32	4.66	0.464

Note: $\omega_{\text {SN }}$ enters squared in the evolution equation
\Rightarrow osmium two orders of magnitude better than silicon

experimental setup (proposal)

IS SEMICLASSICAL GRAVITY + DECOHERENCE ENOUGH?

- Decoherence yields classical mixtures but no collapse
- Collapse models describe nonlinear dynamics, and could be based on gravity but with unclear relation to GR
- Semiclassical gravity by itself does not explain collapse:
- stationary states can be very distinct from likely position eigenstates
- single particle SN dynamics has runaway probability
- deterministic (no Born rule probabilities)
...but how about decoherence and semiclassical gravity combined?
\checkmark evolution into classical states from decoherence
\checkmark nonlinearity from gravity
? stochastic decoherence source? (dark matter? gravitational waves?)
\rightarrow can Born rule be derived from this?

SPIN ENTANGLEMENT IN THE SCHRÖDINGER-NEWTON EQUATION

At the lowest order, gravity yields a phase $\varphi \sim \frac{G m_{1} m_{2} \Delta t}{\hbar \Delta x}$

- Quantised gravity:

$$
\begin{gathered}
\left(|L\rangle_{1}+|R\rangle_{1}\right) \otimes\left(|L\rangle_{2}+|R\rangle_{2}\right) \\
\rightarrow|L\rangle_{1}|L\rangle_{2}+|L\rangle_{1}|R\rangle_{2}+\mathrm{e}^{\mathrm{i} \varphi}|R\rangle_{1}|\mathrm{~L}\rangle_{2}+|R\rangle_{1}|R\rangle_{2} \\
\mathcal{W}=\left|\left\langle\sigma_{x}^{(1)} \otimes \sigma_{z}^{(2)}\right\rangle+\left\langle\sigma_{y}^{(1)} \otimes \sigma_{y}^{(2)}\right\rangle\right|=\left|1+\mathrm{e}^{\mathrm{i} \varphi}\right| \leq 2
\end{gathered}
$$

- Schrödinger-Newton equation:

$$
\begin{aligned}
& \left(|L\rangle_{1}+|R\rangle_{1}\right) \otimes\left(|L\rangle_{1}+|R\rangle_{1}\right) \\
& \quad \rightarrow \mathrm{e}^{\mathrm{i} \varphi / 2}|L\rangle_{1}|L\rangle_{2}+|L\rangle_{1}|R\rangle_{2}+\mathrm{e}^{\mathrm{i} \varphi}|R\rangle_{1}|L\rangle_{2}+\mathrm{e}^{\mathrm{i} \varphi / 2}|R\rangle_{1}|R\rangle_{2} \\
& \quad=\left(|L\rangle_{1}+\mathrm{e}^{\mathrm{i} \varphi / 2}|R\rangle_{1}\right) \otimes\left(\mathrm{e}^{\mathrm{i} \varphi / 2}|L\rangle_{2}+|R\rangle_{2}\right) \\
& \mathcal{W}=\left|\left\langle\sigma_{x}^{(1)} \otimes \sigma_{z}^{(2)}\right\rangle+\left\langle\sigma_{y}^{(1)} \otimes \sigma_{y}^{(2)}\right\rangle\right|=\frac{1}{2}\left|1+\mathrm{e}^{\mathrm{i} \varphi}\right| \leq 1
\end{aligned}
$$

