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QUANTUM MATTER AS A SOURCE MASS FOR GRAVITY

Does gravity need to be quantised?

Is curvature of spacetime a field living on spacetime?
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FROM QUANTUM TO CLASSICAL MASS SCALES

+

quantum matter

flat spacetime

+

classical matter

curved spacetime

10−20 kg 10−4 kg

?
no experimental data
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NONRELATIVISTIC LIMIT OF SEMICLASSICAL GRAVITY

Semiclassical gravity as a fundamental equation:

Rμν −
1
2Rgμν =

8π G
c4 ⟨T̂μν⟩

Weak-field nonrelativistic limit:
∇2V = 4π G ⟨ψ| ρ̂ |ψ⟩ with ρ̂ = mψ̂†ψ̂

Results in the Schrödinger-Newton equation (here for one particle)

iℏ ψ̇(t, r) =
(
− ℏ2

2m∇2 − Gm2
∫
d3r′ |ψ(t, r

′)|2

|r− r′|

)
ψ(t, r)

⇒ Nonlinear Schrödinger equation
⇒ yields gravitational self-interaction of the wave function
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EXPERIMENTAL TESTS OF SEMICLASSICAL GRAVITY

Free spreading of the wave function (interferometric tests):
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ρ = 4π r2 |ψ|2 for masses of 7× 109 u and 1010 u

Effects in optomechanical systems:

Yang et al. PRL 110 (2013) 170401
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CAN GRAVITY ENTANGLE TWO MASSES?

Two adjacent Stern-Gerlach interferometers
Bose et al.: PRL 119 (2017) 240401
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WITNESSING ENTANGLEMENT VIA SPIN

Gravitational phase shift

|Ψ⟩ = eiφ↑↑

2 |↑↑⟩+ eiφ↑↓

2 |↑↓⟩+ eiφ↓↑

2 |↓↑⟩+ eiφ↓↓

2 |↓↓⟩

Simplest case: a≪ Δxr,s, τacc ≪ τ ⇒ φ↓↑ only contribution

Semiclassical gravity: |Ψ⟩ = 1
2

(
|↑⟩+ eiφ↓ |↓⟩

)
⊗
(
eiφ↑ |↑⟩+ |↓⟩

)
Entanglement witness (Bose et al.):

W =
∣∣∣〈σ̂(r)x ⊗ σ̂(s)z

〉
+
〈
σ̂(r)y ⊗ σ̂(s)y

〉∣∣∣
0 ≤ W ≤ 2 for quantised gravity but
0 ≤ W ≤ 1 for semiclassical gravity.
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EFFECT OF RELATIVE ACCELERATION

GMsource
r2 ∼ (1 μm)3

(100 μm)2
=

(1 cm)3

(100 m)2

Phases with external acceleration (here for |↑↑⟩):

φ↑↑ =
Gmrms

ℏ

∫ t

0

dt′
|r↑(t′)− s↑(t′)|

+
1
ℏ

∫ t

0
dt′ g(t′) · (mrr↑(t′) +mss↑(t′))

results in additional phase:

φextr,s = mr,sφext0 ± μB∂xB τ2acc
4ℏ

∫ τ+τacc

τacc
dt gx(t)

White Gaussian noise: ⟨gx(0)gx(t)⟩ =
∫ dω

2π S(ω)e
−iωt and S(ω) ≡ S0

⇒ mixed state ρ̂ =
∫
dφextP(φext) |Ψ(φext)⟩⟨Ψ(φext)|
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ENTANGLEMENT WITNESS WITH NOISE

We find the expectation values (assuming mr ≈ ms)〈
σ(r)x ⊗ σ(s)z

〉
=
e−γ
2 (cos(Δφ+ δχ)− cos(δφ− δχ))〈

σ(r)y ⊗ σ(s)y
〉
=
1
2
(
cos(Δφ− δφ)− e−4γ cos(2δχ)

)
with

γ = mrms Δx2 τ S0
8ℏ2

Δφ ≈ Gmrmsτ
ℏ(d−Δx) −

Gmrmsτ
ℏd , δφ ≈ Gmrmsτ

ℏ(d+Δx) −
Gmrmsτ

ℏd , δχ ≈ Gmrmsτδx
ℏd2

Implies for the entanglement witness: W ≤ 1
2 + e−γ + e−4γ

2

W > 1 ⇔ γ ≲ 0.75 ⇔ S0 ≲
6ℏ2

mrmsτ Δx2
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LIMITATIONS FROM CASIMIR-POLDER FORCES

Gravitational energy ∼ 1/a≫ Casimir-Polder energy ∼ 1/a7

⇒ a≫ 1
2
√
π

(
3α
ρ

√
23 ℏc
G

)1/3

With Gmrmsτ ∼ ℏa and Δx ≳ a for a detectable phase one finds the
noise limit:

S0 ≲
8 ℏG
3π a3 ≪ 64 ρ

9α

√
πℏG3
23 c

depending only on material, with α ≳ 0.35 and ρ ≲ 23 g/cm3

⇒
√
S0 ≪ 0.24 fm s-2/

√
Hz
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LIMITATIONS FROM DECOHERENCE

For unequal M ≥ m with Δxr ≈ Δxs ≈ Δx we findW > 1 for S0 ≲ ℏ2
M2τΔx2

The closest approach is the radius of the larger particle R ≈ a ≈ Δx

⇒
√
S0 ≲

ℏ
ρR4

√
τ

Observable phase (Δφ ∼ π): GmMτ ∼ ℏa ∼ ℏR

τ < decoherence from gas collisions τdec ∼
√
kTmgas/(PR2):

R4
√
τ ∼ M2τ

ρ2R2
√
τ
>

mMτ
ρ2R2

√
τ
>

ℏ
Gρ2R√τdec

∼ ℏ
√
P

Gρ2 (kTmgas)
−1/4

⇒
√
S0 <

8Gρ
9
√
ζ(3/2)ngas

(mgas
3kT

)1/4
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ACCLERATION NOISE LIMITS

Bose et al. interstellar
Material diamond osmium
Density 3.5 g/cm3 23 g/cm3

Medium (gas) air hydrogen
Temperature 150 mK 1 μK
Pressure 10-15 Pa 10-23 Pa
Particle density 500/cm3 1/cm3

√
S0 < 1.4 pms-2/

√
Hz 2.1 nms-2/

√
Hz

▶ ≪ nano-g in drop tower experiments?
▶ active mitigation or precise tracking of gx(t)?
▶ space? (

√
S0 ∼ 5 fm s−2/

√
Hz in LISA Pathfinder)
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FALSIFICATION POWER OF EXPERIMENTS

What can different experiments teach us about gravity?

perturbative
quantum
gravity

semiclassical
gravity

(SN equation)

theories without
self interaction

theories without
entanglement

?
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FALSIFICATION POWER OF EXPERIMENTS

What can different experiments teach us about gravity?

perturbative
quantum
gravity

semiclassical
gravity

(SN equation)

theories without
self interaction

theories without
entanglement

?

Gravity sourced by…
▶ weak measurements

Kafri, Taylor, Milburn. New J. Phys. 16, 065020 (2014).

▶ objective collapse events
Tilloy and Diósi. Phys. Rev. D 93, 024026 (2016).
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TESTING SELF-GRAVITY WITH SPIN

If gravitational spin-entanglement can be detected over 100 μm…

can a self-gravitational effect on spin be detected?

∂zB ∂zB
g

m

τacc τaccτ

∆z0

z↑,SN

z↓,SN
z↓,SE

z↑,SE
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THEORETICAL MODEL

Spin superposition state (initially Gaussian in space):

|Ψ(t)⟩ = α |↑⟩ ⊗
∫
d3rψ↑(t, r) | r⟩+ β |↓⟩ ⊗

∫
d3rψ↓(t, r) | r⟩

Ĥ = Î⊗
(
− ℏ2

2m∇2 + Vext + |α|2 U↑ + |β|2 U↓

)
+ σ̂z ⊗ Vacc

▶ U↑↓ depend on ψ↑ and ψ↓ ⇒ nonseparable Schrödinger eq.
▶ Can be made linear and separable by perturbative approach
▶ Homogeneous Vext, Vacc only yield phase + displacement
▶ Both the wave function width and split of classical trajectories
can be in three regimes defined by atomic scale ∼pm and
particle size ∼ μm
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SPIN EXPECTATION VALUE (PRELIMINARY!)

⟨σ̂x⟩ = e−γSN−γg cos(φαβ + φg + φSN)

▶ φαβ: initial relative phase between α and β
▶ φg ∼ ⟨g⟩ COW phase, γg ∼ var(g) acceleration noise decoherence
▶ φSN nonzero only for unsymmetric state |α|2 ̸= |β|2

▶ γSN loss of visibility due to reduced overlap of ψ↑ and ψ↓

Bose et al. massive
Particle size 1 μm 60 μm (Os.)
Separation 100 μm 3 pm
Wave function 0.1 pm …100 nm 3 pm

γg < 1 for Δg < 10−17 ms-2 10−13 ms-2
γSN (sym./unsym.) 10−6 / O(1) O(10)/O(1)
Phase φSN −O(1) −O(1)
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THANK YOU!

QUESTIONS?

LAYOUT BASED ON MTHEME BY M. VOGELGESANGcba 16



ADDITIONAL SLIDES



PAGE-GEILKER “EXPERIMENT”

Quantum decision process: measuement of state 1√
2 (|ψ⟩+ | χ⟩)

used to place a macroscopic mass into opositions x1 or x2.

▶ no collapse interpretation:
System is in state 1√

2 (|ψ⟩⊗ | x1⟩+ | χ⟩⊗ | x2⟩) and gravitates
towards x = x1+x2

2 ⇒ not observed
▶ instantaneous collapse (Copenhagen interpretation):
violates ∇μGμν = 0

⇒ no obvious problem with non-instantaneous reduction
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SUPERLUMINAL SIGNALLING (I)

Claim: any deterministic nonlinearity in the Schrödinger equation
leads to the possibility to send faster than light signals (Gisin, 1989)

▶ E.g. entangled spin- 12 particles:

1√
2
(|↑⟩A |↓⟩B+ |↓⟩A |↑⟩A) =

1√
2
(|+⟩A |+⟩B− |−⟩A | −⟩B)

where | ±⟩ = 1√
2 (|↑⟩± |↓⟩) are the σx eigenstates

▶ Measuring in σz or σx basis results in same density matrix after
tracing over possible outcomes |↑⟩B and |↓⟩B or |+⟩B and | −⟩B:

ρ̂A =
1
2 |↑⟩⟨↑| + 12 |↓⟩⟨↓|= 1

2 |+⟩⟨+| + 12 | −⟩⟨−|

equivalent mixtures (measurement at A independent of basis B)
remain equivalent in a linear theory
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SUPERLUMINAL SIGNALLING (II)

|↑> |↓> |+>

z↑

z↓

z↑
z↓~

~

▶ Semiclassical gravity: assume spin of particle A becomes
entangled with its position (e.g. in magnetic field gradient)

|↑⟩ → |↑⟩⊗ | z↑(t)⟩ , |↓⟩ → |↓⟩⊗ | z↓(t)⟩

▶ However in superposition states | ±⟩

| ±⟩ = 1√
2
(|↑⟩± |↓⟩) → 1√

2
(
|↑⟩⊗ | z̃↑(t)⟩± |↓⟩⊗ | z̃↓(t)⟩

)
with z̃↑↓(t) ≈ z↑↓(t)± Gm

2
∫ t
0 dt

′ ∫ t′
0 dt

′′ |z↑(t′′)− z↓(t′′)|−2

⇒ measurement outcomes at A depend on choice of basis at B
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COLLAPSE MODELS

▶ Usual dogma: stochastic nonlinearity avoids superluminal
signalling. Evolution of density matrix remains linear.

d
dt ρ̂ = − i

ℏ
[Ĥ, ρ̂]− λ

2

∫
d3x

∫
d3yG(x− y) [m̂(x), [m̂(y), ρ̂]]

▶ Source of stochastic nonlinearity unknown⇒ gravity?
▶ Diósi-Penrose: G(x) = G/ℏ |x|−1 ⇒ collapse rate ∼ self-energy:

tC ≈
ℏR0
Gm2

▶ Needs to be regulated: coarse graining with length scale R0
⇒ instantaneous collapse only a good approximation above R0
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SUPERLUMINAL SIGNALLING (III)

Need to distinguish between z↑↓(t) and z̃↑↓(t) = z↑↓(t) + Δz

▶ Spatial resolution λ ⇒ detection time tD ≈ 2Δz
√

λ
Gm

▶ Uncertainty δz δpz ≈ ℏ and λ < Δz implies

λ > δz+ tD
m δpz >

√
ℏ tD
m >

(
ℏ2 λ3

Gm3

)1/4

⇔ λ > ℏ2

Gm3

▶ No collapse before separation:

t2C ≈
ℏ2 R20
G2m4 > t2D >

λ3

Gm ⇔ ℏ2

Gm3 >
λ3

R20

▶ Both conditions combined require λ < R0
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ANALOGY TO ELECTRODYNAMICS

What is the electric field of a charged particle in a superposition?
⇒ field becomes entangled to particle state: |ψ⟩⊗ | Eψ⟩+ | χ⟩⊗ | Eχ⟩

▶ Evolves in time: |ψ(t)⟩⊗ | Eψ(t)⟩+ | χ(t)⟩⊗ | Eχ(t)⟩
▶ Test particle position gets entangled as well:

|ψ(t)⟩⊗ | Eψ(t)⟩⊗ | xTP[Eψ(t)]⟩+ | χ(t)⟩⊗ | Eχ(t)⟩⊗ | xTP[Eχ(t)]⟩
▶ Interference terms at location x:
2P(t, x) = |ψ(t, x)|2 + |χ(t, x)|2 +ψ∗(t, x)χ(t, x) +ψ(t, x)χ∗(t, x)

⇒ no need for QED but accounts for “quantumness” of the field
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QUANTISED GRAVITY AS SOLUTION?

In analogy to electrodynamics: |ψ⟩⊗ |Gψ⟩+ | χ⟩⊗ |Gχ⟩
⇒ superposition of two spacetimes

Incompatible with spacetime curvature:

▶ There is no well defined time translation operator in a
superposition of spacetimes

▶ State |ψ⟩ will evolve according to the Schrödinger equation in
spacetime |Gψ⟩, whereas | χ⟩ evolves in spacetime |Gχ⟩

▶ How to identify points in different spacetimes?
(e.g. for performing an interference experiment)

C.f. Penrose (1996)
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THREE SCHRÖDINGER-NEWTON EQUATIONS

The Schrödinger-Newton equation can be seen as…

▶ Hartree approximation ΨN = ψ⊗ψ⊗ · · · ⊗ψ for gravitational
interaction potential (e.g. gravitating Bose-Einstein condensate)

V =
∑
i ̸=j

− Gm2∣∣xi − xj
∣∣

▶ Nonrelativistic (c→ ∞) limit of the classical
Einstein-Klein-Gordon (or Einstein-Dirac) equation

φ ∼ eimc
2t/ℏ (ψ+O(c−2)

)
▶ Supposed nonrelativistic approximation of a quantum field
gravitating according to the semiclassical Einstein equations
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MANY PARTICLES TO CENTRE OF MASS

Realistic systems for testing SN are not single particles:

iℏΨ̇N(rN) =
[
−

N∑
i=1

ℏ2

2mi
Δri + Vlinear(rN) + VG[ΨN(rN)]

]
ΨN(rN)

VG[ΨN(rN)] = −G
N∑
i=1

N∑
j=1

mimj

∫ ∣∣∣ΨN(r′N)∣∣∣2∣∣∣ri − r′j
∣∣∣ dV′N

Centre of mass equation (approx.), separation ΨN = ψ⊗ χN−1:

iℏ ψ̇(t, r) =
(

− ℏ2

2M∇2+Vext.lin. − G
∫
d3r′

∣∣ψ(t, r′)∣∣2 Iρ(r− r′)
)
ψ(t, r)

Iρ(d) =
∫
d3xd3yρ(x)ρ(y− d)

|x− y| (where ρ is given by
∣∣χN−1

∣∣2)
26



SN DYNAMICS: INHIBITION OF FREE EXPANSION

wave function≪ particle size ⇒ ρ ≈ δ(rcm) ⇒ Iρ(d) ≈ 1/ |d|:

iℏ ψ̇(t, r) =
(
− ℏ2

2m∇2 − Gm2
∫
d3r′ |ψ(t, r

′)|2

|r− r′|

)
ψ(t, r)
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ρ = 4π r2 |ψ|2 for masses of 7× 109 u and 1010 u

Problem: time scale (order of hours!)
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FREE EXPANSION SN TEST

Inhibition of free expansion of wave packets:

green line intuitively: free wave function would have increased by
25% but maintains its width due to self-gravity 28



INHIBITION OF FREE EXPANSION, SCALING LAW

In the wide wave function limit: one-particle SN equation
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ρ = 4π r2 |ψ|2 for masses of 7× 109 u and 1010 u

▶ For a mass of ∼ 1010 u and a wave packet size of about 500nm a
significant deviation is visible after several hours

▶ Scaling law: with ψ(t, x) for mass m, a solution for mass μm is
obtained as μ9/2ψ(μ5t,μ3x) ⇒ e. g. 1011 u at 0.5 nm would
show an effect in less than a second but must remain in wide
wave function regime (Os at 1010 u has 100 nm diameter)
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REALISTIC MODEL FOR TIME EVOLUTION

Assumption: a Gaussian wave packet stays approximately Gaussian

The free spreading of a Gaussian wave packet and spherical particle
can be approximated by a third order ODE for the width u(t) = ⟨r2⟩(t):

...u(t) = −3ω2
SN f(u(t)) u̇(t)

with ωSN =
√
Gm/R3 ∼

√
Gρ, initial conditions

u(0) = u0 , u̇(0) = 0 , ü(0) = 9ℏ2
2m2 u0

−ω2
SN g(u0)u0 ,

and the functions (with u in units of R)

f(u) = erf
(√

3
u

)
+

√
u
3π

(
u− 7

2 − 324− 162u− 35u4 + 70u5
70u4 e−3/u

)

g(u) = erf
(√

3
u

)
+

√
u
3π

(
2
3u− 3+ 486+ 105u3 − 70u4

105u3 e−3/u
)
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SHORT TIME EXPANSION

u(t) ≈ u0 +
1
2 ü(0) t

2

▶ exact without self-gravity term
▶ deviates from usual evolution by dependence on g(u0) in

ü(0) = 9ℏ2
2m2 u0

−ω2
SN g(u0)u0

▶ stationarity condition ü(0) = 0 yields (pessimistic) estimate for
the scales where self-gravity becomes important

▶ Assume osmium particle initially trapped with ω0
⇒ characteristic time scale τ = ω−1

0 , u0 = 3ℏ τ/m
▶ ü(0) = 0 determines characteristic (m, τ) graph
▶ limit g(u) → 1 for u→ 0 yields τ(m) = const. for large m
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INHIBITION OF FREE EXPANSION, NARROW WAVE FUNCTIONS

For narrower wave functions (here O(10 nm) ≲ particle size):
approximate ODE (assume: Gaussian wave packet remains Gaussian)

d3

dt3 ⟨r
2⟩ = −3ω2

SN f(⟨r2⟩)
d
dt ⟨r

2⟩

0 50 100 150 200 250 300
t / s

0.005
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0.030

Δ < r 2 > / %

0 200 400 600 800 1000
t / s
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1.0

1.5

Δ < r 2 > / %

rel. deviation from standard Schrödinger evolution for m = 109 u and 1010 u
⇒ 1% deviation after 200 s → maybe in space?
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SN EQUATION FOR LOCALISED OBJECTS

wave function≫ particle size ⇒ to O(|r− r′|2), I′′(0) = mω2
1:

iℏ ψ̇(t, r) =
(
− ℏ2

2m∇2 +
mω2

2

(
(r− ⟨r⟩)2 + ⟨r2⟩ − ⟨r⟩2

))
ψ(t, r)

Effects in optomechanical systems:

Yang et al. PRL 110 (2013) 170401
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A.G. et al. PRD 93 (2016) 096003
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LOCALISED STATES IN CRYSTALLINE MATTER

d

R

σ

a

ρnucl

ρ

▶ the relevant radius is σ
(localisation of the nuclei)

▶ effective mass density ρnucl
∼ 103ρ

▶ ωSN =
√

Gmatom
σ3 ∼

√
Gρnucl

∼ 1 Hz for osmium

Need ground state cooling for:
mass ∼ 1015 u (μm sized) particle

trapped at O(10Hz)
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MATERIAL CHOICES

ωSN =

√
Gmatom
σ3

Material matom / u ρ / g cm-3 σ / pm ωSN / s-1

Silicon 28.086 2.329 6.96 0.096
Tungsten 183.84 19.30 3.48 0.695
Osmium 190.23 22.57 2.77 0.996
Gold 196.97 19.32 4.66 0.464

Note: ωSN enters squared in the evolution equation
⇒ osmium two orders of magnitude better than silicon
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EXPERIMENTAL SETUP (PROPOSAL)
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36



IS SEMICLASSICAL GRAVITY + DECOHERENCE ENOUGH?

▶ Decoherence yields classical mixtures but no collapse
▶ Collapse models describe nonlinear dynamics, and could be
based on gravity but with unclear relation to GR

▶ Semiclassical gravity by itself does not explain collapse:
∙ stationary states can be very distinct from likely position eigenstates
∙ single particle SN dynamics has runaway probability
∙ deterministic (no Born rule probabilities)

…but how about decoherence and semiclassical gravity combined?

✓ evolution into classical states from decoherence
✓ nonlinearity from gravity
? stochastic decoherence source? (dark matter? gravitational waves?)
→ can Born rule be derived from this?
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SPIN ENTANGLEMENT IN THE SCHRÖDINGER-NEWTON EQUATION

At the lowest order, gravity yields a phase φ ∼ Gm1 m2 Δt
ℏ Δx

▶ Quantised gravity:
(| L⟩1+ | R⟩1)⊗ (| L⟩2+ | R⟩2)

→| L⟩1 | L⟩2+ | L⟩1 | R⟩2 + eiφ | R⟩1 | L⟩2+ | R⟩1 | R⟩2

W =
∣∣∣〈σ(1)x ⊗ σ(2)z

〉
+
〈
σ(1)y ⊗ σ(2)y

〉∣∣∣ = ∣∣1+ eiφ
∣∣ ≤ 2

▶ Schrödinger-Newton equation:
(| L⟩1+ | R⟩1)⊗ (| L⟩1+ | R⟩1)

→ eiφ/2 | L⟩1 | L⟩2+ | L⟩1 | R⟩2 + eiφ | R⟩1 | L⟩2 + eiφ/2 | R⟩1 | R⟩2
= (| L⟩1 + eiφ/2 | R⟩1)⊗ (eiφ/2 | L⟩2+ | R⟩2)

W =
∣∣∣〈σ(1)x ⊗ σ(2)z

〉
+
〈
σ(1)y ⊗ σ(2)y

〉∣∣∣ = 1
2
∣∣1+ eiφ

∣∣ ≤ 1
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