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Introduction
The Geoid

Image Credit: CSR, UT

The geoid is a hypothetical construct
representing a surface, on which all points share
the same gravitational potential.

If Earth was completely covered with water (and
without any non-gravitational forces), it would look
like the geoid.

The geoid changes when mass redistributes,
e.g. when rocks move (earthquakes), ice melts
(pole caps, glaciers) or water accumulates (rain,
monsoon).
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Introduction
Geodesy Missions

Space-borne geodesy missions for determining the
geoid have a history!
▶ CHAMP (D/US, 2000-2010):

1 satellite, orbit tracking
▶ GRACE (US/D, 2002-2017):

2 satellites, microwave ranging
▶ GOCE (ESA, 2009-2013):

1 satellite, 3-axis gradiometer
▶ GRAIL (US, 2011-2012):

2 satellites, microwave ranging
▶ GRACE Follow-On (US/D, 2018-today),

2 satellites, microwave and laser ranging
Image Credits: GFZ, NASA/JPL, ESA, DLR
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Introduction
The GRACE Principle

Malte Misfeldt The LRI on GRACE-FO EPS: Measuring Gravity, July 2021 4



Introduction
Time-Variable Gravity Field Maps

With the GRACE missions, monthly snapshots
of the Earth gravity field are taken.

Image Credits: NASA/JPL
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The LRI
Setup

Image Credit: Abich et al. [1]

The LRI was developed in a
US-German collaboration
between AEI and
NASA/JPL, including
industrial partners STI,
Airbus, . . .
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The LRI
Setup

The LRI measures twice the distance
between the TMA vertex points,
which are ideally located within the
S/C CoM:

M = x1 + x2 + x3 + x4 + x2 + x5

= 2(d1 + d2 + x2) = 2L
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Challenge: How to establish the laser link?
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Commissioning
Establishing the laser link

▶ Initially, the pointing of the individual LRI units is only known up within a certain
tolerance: The laser beams do not point along the line-of-sight!
▶ Alignment tolerances during integration
▶ Shaking during rocket launch
▶ Zero-g settling
▶ ...

▶ The transponder’s laser frequency must match the master’s cavity within 16 MHz
(limited by bandwidth of the photodetector)

▶ Thus, to acquire a Laser-Link between the two LRI units, 5 degrees of freedom (2 angles
per S/C, 1 frequency (transponder)) need to meet a narrow range, all at once, in order
to see a signal. This calibration is called Initial Acquisition
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Commissioning
Initial Acquisition Scan Design

Image Credit: Koch et al. [2]

▶ Master: Slow Hexagon Pattern
(10.5 min)

▶ Transponder: Fast Lissajous
Pattern (0.5 s) and linear
frequency ramp (9 hrs,
360 MHz)

▶ Continuous spectral evaluation
of the photoreceiver signals: If
the frequency-difference is
within the bandwidth and the
angles match, a peak in the
spectrum is detected
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Commissioning
Initial Acquisition Scan Results

▶ Back on Earth: Plenty of
flashes!

▶ The center denotes the
angular pointing offsets

▶ Starting from these offsets,
a Reacquisition Scan with
a smaller scan range is
performed with
autonomous transition into
science mode.

Image Credit: Abich et al. [1]
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Commissioning
Ensuring the alignment: Sensor

Image Credit: Sheard et al. [3]

▶ Using a multi-segment photodiode, relative alignment of the beams can be determined
▶ Relative beam tilts can be measured with high gain of 5000...20 000 rad/rad
▶ The LRI provides yaw and pitch angles (w.r.t. line of sight) with low noise, which could

be used for improving the SCA or AOCS
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Commissioning
Ensuring the alignment: Actuator

Image Credit: Sheard et al. [3]

Transmit and received beam recombine on
beam splitter and pass imaging optics. In
nominal case, the beams are perfectly aligned.
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Commissioning
Ensuring the alignment: Actuator

Image Credit: Sheard et al. [3]

Transmit and received beam recombine on
beam splitter and pass imaging optics. In
nominal case, the beams are perfectly aligned.

S/C rotations cause the incoming beam to be
misaligned w.r.t. the local beam ⇒ Non-zero
DWS signal, reduction of signal contrast and
misaligned outgoing beam.
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Commissioning
Ensuring the alignment: Actuator

Image Credit: Sheard et al. [3]

Transmit and received beam recombine on
beam splitter and pass imaging optics. In
nominal case, the beams are perfectly aligned.

S/C rotations cause the incoming beam to be
misaligned w.r.t. the local beam ⇒ Non-zero
DWS signal, reduction of signal contrast and
misaligned outgoing beam.

Closing the loop between DWS readout and
steering mirror position zeros the DWS signal.
Received and transmit beam are parallel again.
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In-Orbit Performance
Time Domain
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▶ The LRI went into science mode
on first attempt (2018-06-14
13:23:51 UTC)

▶ It stays in lock for hundreds of
orbits without interruption
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In-Orbit Performance
Frequency Domain
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In-Orbit Performance
Frequency Domain
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In-Orbit Performance
Tilt-To-Length Coupling

Image Credit: Wegener et al. [4]

▶ Due to residual integration errors and
CoM-to-Vertex offsets of the TMA,
spacecraft rotations alter the range
measurement.

▶ The linear coupling factors [units:
µm/rad] can be determined using CoM
calibration maneuvers. They are within
the requirements for all three axis roll,
pitch and yaw

▶ Bonus: Pitch and Yaw coupling factors
are equivalent to CoM-VP offset, thus
LRI can help to track the S/C CoM
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In-Orbit Performance
Non-Gravitational Accelerations

▶ In the frequencies above the gravity
signal, an unexpected deviation from the
laser frequency noise is observed

▶ Investigations showed that this arises
from linear accelerations, e.g. solar
radiation pressure and attitude thrusters

▶ It is possible to remove these unintended
effects from the range 10-2 10-1 100
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In-Orbit Performance
Non-Gravitational Accelerations

Image Credit: Stuhrmann [5]

▶ Attitude control thruster induce
not only rotations but also linear
accelerations

▶ The LRI is able to resolve these
(only in LoS)

▶ This new dataset allows further
calibration of the thrusters

▶ Top: Yaw- thruster events,
Bottom: Roll+ thruster events
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In-Orbit Performance
Post-Fit Residuals

▶ "post-fit": Residual signal after
gravity field recovery

▶ Lower frequencies: Background
modeling, Aliasing and
Accelerometer noise dominate
the residuals

▶ The LRI has less noise above
8 mHz, revealing a mis-modeling
in the background models
(Ghobadi-Far et al. [6])
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In-Orbit Performance
Post-Fit Residuals

Image Credit: Max-Planck Institute for Gravitational Physics (Albert Einstein Institute) [7]
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In-Orbit Performance
Other scientific outputs

▶ The high sensitivity of the LRI can
resolve tiny disturbances (at
frequencies higher than the gravity
signal)

▶ Some of these disturbances correlate
with spikes in the ACC (LoS
direction)

▶ The LRI is able to detect
∆v -changes, likely caused by
micro-meteorite impacts (10 µg at
15 km/s)

▶ Roughly 30 Events per S/C per year
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Conclusion

The LRI provides precise ranging data with a noise level as small as 200 pm/
√

Hz at a
frequency of 5 Hz.

Long uninterrupted measurements, e.g. for more than 106 days, which is approximately 1650
orbital revolutions.

No degradation of LRI data streams was observed so far. The LRI should provide high quality
ranging and attitude data in the next years.

The low LRI noise enables new insights like micro-meteorites or into thruster characterization.

The LRI ranging data does not limit the Earth gravity field recovery.
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Outlook: NGGM

The LRI proved that inter-satellite laser ranging is ready for being used, e.g. in NGGM or
LISA.

Different concepts using laser istruments as primary ranging instrument are being studied by
ESA. Ensuring the lifetime over many years and full redundancy requires some more effort.

Possible Improvements
▶ Dedicated Acquisition Sensor
▶ Feedback of LRI pointing information into attitude control, which reduces tilt-to-length

noise
▶ Mitigation of thruster-induced micro-shocks, especially of Roll-thruster, in order to avoid

phase jumps
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Contact Information

Feel free to ask questions!

Malte Misfeldt
for the LRI team

malte.misfeldt@aei.mpg.de
Max-Planck Institute for Gravitational Physics

(Albert Einstein Institute AEI)
Hannover - Germany
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