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What is LISA and how does it work?

LISA is a space mission to detect gravitational waves:
• Free-falling test masses are tidally accelerated by
curvature.

• Relative acceleration is detected as a frequency
modulation of the received laser beam.

• Spacecrafts have the goal to protect the purity of
the free fall of test masses.
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Need for charge management and LPF heritage

Problem
Cosmic rays and SEP charge positively the TMs. The net charge rate for CRs is
expected to be between +10 e/s and +100 e/s.

• TM charge is required to be kept in the
range ±1.5 · 107 e (i.e. ±70mV) to ensure
the full LISA sensitivity.

• Need for a charge management system
(CMS) to keep the TM voltage under
control.

• LPF successfully proved that this could be
achieved with Hg UV-lamps.
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But, why?

The electrostatic force on the TM (at
linear order) is

Fx =
QTM
Ctot

dCx
dx ∆x
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The two main sources of electrostatic
force noise are:
• Interaction of a charged TM with
noisy stray potentials (dominant)

SFx(δ∆x) =

[
QTM
Ctot

dCx
dx

]2
S∆x

• Interaction of a fluctuating TM
charge with DC stray potentials
(relevant at low-frequencies)

SFx(δQTM) = SQTM
[
1
Ctot

dCx
dx ∆x

]2
3



Charge management in LISA

For LISA the current design aims to use UV-LEDs, with the following advantages:

• Can be synchronized with the 100 kHz TM bias (also improved redundancy).
• Weight and volume saving.
• More reliable and robust (longer lifetime).
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4-mass torsion pendulum at UTN
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Main features of our facility
Flight model replica of LPF GRS, copy of LPF FEE for
actuation/sensing, ISUK positioned as in LPF.
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UV light sources and prototype CMD

Light sources

• LPF Hg-lamp
replica

• SETi 255
• SETi 240
• Crystal 250

UV power
measurement

• Si-Photodiode
(S1337-1010BQ)

• PMT (H6780-03)
• Spectrometer
(AvaSpec-
ULS2048XL-EVO)

Charge Management Device
Prototype CMD provided by the INFN/Roma Tor
Vergata group.
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Apparent yield measurements
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Expected qualitative behavior

As the inner surfaces of the gravitational reference sensor (GRS) are reflective, a
fraction of the incident UV-light is absorbed by the opposing surface.
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Differences for TM and EH illuminations
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Measured apparent yield (Crystal 250, EH illumination)
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Apparent yield for EH and TM illuminations
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NB!
We had some issues regarding the power normalization!
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Interpretation of the data: a simple model

The model is based on the follwing assumptions:

• Idealized geometry: EH and TM surfaces are plane parallel sheets.
• The electrons in the emitter are modeled as a free Fermi gas. The absorbed
photon brings their normal kinetic energy to E⊥0 + hfUV.

• If E⊥0 + hfUV > EF,e +We, there is a non-zero probability of being emitted with

E⊥emiss = E⊥0 + hfUV −We − EF,e
• All emitted e− with energy larger than the potential barrier ∆V contribute to
the photocurrent (where ϕ is the contact potential).

hfUV

Eemiss
E⊥emiss ∆V = Ve − Vc + ϕ

Emitter

Collector
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Fit of the data

The Bayesian fit obtained by sampling the following Gaussian log-likelihood with
a Hamiltonian Monte Carlo algorithm (NUTS by the API PyMC3)

LL(y|θ) = − 12
∑
i

[yi − f(θ, xi)]
σ2i

The fit parameters θ are:
• The work function of EH (WEH)
• The difference of TM and EH work
function (∆W = WTM −WEH)

• The quantum yield of EH (QYEH)
• The quantum yield of TM (QYTM)
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Posterior distribution of fit parameters
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Conclusions and future work

Except for some anomalies, we experimentally proved the advantages of using
UV-LEDs synchronized with the injection bias, such as of tuning the TM voltage
and the discharge rate with the phase of the illumination.

We have a simple but effective model to interpret the data and extract relevant
surface parameters (e.g. WEH = 3.97± 0.03 eV and WTM = 3.64± 0.05 eV), which
would be hard to measure otherwise.
Future steps

• Apply the fitting procedure to all the AY data.
• Improve our models to interpret the data (FEM model for photoelectrons
trajectories and fields, accurate mapping light absorption).
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Thank you for the attention!
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