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Vertical magnetic field at the photosphere. The
Poynting flux causing the heating event at originates
from small-scale motions within the magnetic
concentrations in the intergranular lanes.

The heated strand is rooted in the vortex highlighted
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between the photosphere and corona.

Spatio-temporal evolution along a single field line. The quantities shown are electron density a),
temperature b), axial component of the Poynting flux c) and total heating rate d). The arrows mark
locations of Poynting flux reaching the opposite chromosphere (1), dissipation (2) and reconnection (3).

corona

m Self-consistent simulation of a coronal loop in a box including the photosphere

m Poynting flux originates from strong magnetic elements showing coherent internal motions
m Vortices channel Poynting flux into the corona
Synthetic Observables m Heating events lead to thin transient strands of hot plasma seen in synthesized emission
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magnetic field. The vertical magnetic field is plotted on a horizontal cut at the average photospheric height. i o m Extremely high resolution simulation (3-6 km) using GPU version of MURaM

(b) Volume rendering of the loop temperature. (c) Volume rendering of the loop density. The z-axis (along ° 1 20 . w 5° %0 °
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m Coronal Emission in EUV and X-Ray shows clear substructure
m Bright thin, transient strands with a width of 105-900 km (AIA) and 170-740 km (XRT)




