Track Classification : Flare and Nanoflare heating

26 May 2021 11:25 - 11:38 (Talk 10 + Q&A 3)

Study of Time Evolution of Thermal and Non-Thermal Emission from the M-Class Solar Flare

Shunsaku Nagasawa (Kavli IPMU, The Univ. of Tokyo)

Tomoko Kawate (NIFS), Noriyuki Narukage (NAOJ)

Tadayuki Takahashi (Kavli IPMU), Amir Caspi (SwRI)

Tom Woods (LASP, University of Colorado)

Thermal and Non-thermal Emission

(Shibata 1999)

Lack of spectroscopic observation in SXR band

✓ To study time evolution and energetics of solar flares, Spectroscopic observation with <u>high energy and high time resolution</u> is required

Current status: GOES SXR fluxes (1.6-12 keV and 3.0-25 keV) \rightarrow Only estimate the temperature and emission measure by assuming isothermal

MinXSS: Miniature X-ray Solar Spectrometer

Analysis target flare

GOES M7.6 Class Flare

Lightcurve

Spectral analysis

HXR and 17GHz radio flux are rapidly increased in ~650 sec. and 850 sec.
= Non-Thermal emission ↓
X-ray flux decreases gradually and rises again around 1700 sec.

To follow the time evolution of thermal and non-thermal emission, spectral analysis is conducted in 10 sec. cadences

2021/5/20

Spectrum models

Thermal: APEC emission spectrum

- T : Plasma Temperature
- EM : Emission Measure
- Si, Ca, Fe abundance

Non-thermal : Broken power-law

- *E*_{Break} : Break Energy
- γ_1 : Index before $E_{Break} \rightarrow$ fix at 2.0
- γ_2 : Index after E_{Break}

Three different spectra during flare

2021/5/25

Time evolution of Temperature, EM, Spectral Index

2021/5/20

Findings by MinXSS+RHESSI

From spectrum

Non-Thermal Emission

clearly detected by RHESSI, power-law photon index $\gamma \sim 2.8$

Thermal Emission

MinXSS provides the information on **three thermal emission** components

1. Cool plasma (T~3 MK), 2. hot plasma (T~15 MK), 3. superhot plasma (T~30 MK)

From combined time evolution

Cool (T~3 MK) plasma:

• Emission measure is increased by three orders of magnitude EM : 1×10^{48} cm⁻³ $\rightarrow \sim 2 \times 10^{51}$ cm⁻³

Hot (T~15 MK) plasma:

Emission measure is increased by two orders of magnitude
 EM : 1 × 10⁴⁷ cm⁻³ → ~ 3×10⁴⁹ cm⁻³

Superhot (T~30 MK) plasma:

• gradually taking place after the first HXR peak

✓ <u>Time evolution of three thermal emission components are</u> <u>clearly resolved by adding MinXSS data</u>

2021/5/26

The origin of cool thermal component

2021/5/26

The origin of hot and superhot thermal component

Hot component:

2021/5/26

Summary

Spectra analysis for M7.6 Class Flare combining MinXSS and RHESSI

every 10 seconds for the entire flare event in the energy range 1.5 keV to 100 keV

Thermal Emission

three thermal emission components are detected

+ these time evolution are followed with a 10 seconds cadence for the first time

Cool (T~3 MK) and Hot (T~15 MK) plasma:

emission measure is increased by more than two orders of magnitude + DEM increases within the flaring loop \rightarrow chromospheric evaporation ?

Superhot (T~30 MK) plasma:

gradually taking place after the first HXR peak + 17GHz radio wave emission

- \rightarrow thermalization of the non-thermal electrons trapped in the flaring loop?
- \rightarrow Next: Study of relationships between each thermal and non-thermal emissions
 - Imaging spectroscopy by future experiments

such as FOXSI-4(2024) and PhoENiX