A solar source of Alfvénic magnetic field switchbacks: \textit{in situ} remnants of interchange reconnection on supergranulation scales

Stuart D. Bale, Sam Badman, Trevor Bowen, Mihir Desai, Jim Drake, Jasper Halekas, Tim Horbury, Justin Kasper, Ronan Laker, Alfred Mallet, Lorenzo Matteini, Michael McManus, Olga Panasenko, Tai Phan, Nour Raouafi, Chen Shi, Jonathan Squire, Julia Stawarz, Marco Velli, Lloyd Woodham, Tom Wooley...and probably more

- PFSS Modeling/mapping – Olga Panasenko, Sam Badman, Ronan Laker
- Ballistic mapping and Solar Orbiter analysis – Tim Horbury
- SPAN ion fits – Michael McManus, Lloyd Woodham
- SPAN electron fits – Jasper Halekas
- ISOIS/EPI-Lo measurements – Mihir Desai
Summary

- Microstreams, pressure-balanced structures -> funnels? plumes?
- Switchbacks are modulated in amplitude and occurrence on 3-5° angular scales
- Enhanced alpha abundance, wind speed, ion temperatures
- Depressed electron temperatures, magnetic field $|B|$
- Suprathermal ions to ~ 85 keV
- Pressure balance – spatial structure – highly evolved by 200 Rs
Encounter 06
Perihelion at 20 Rs
PFSS Connectivity on Sept 27, 2020

- Rss = 2.2 Rs
- PSP is connected to a southern coronal hole (CH) at around -60°
- Black contours are magnetic pressure at 14 Mm altitude
- Network magnetic field
PSP Encounter 06

Unipolar strahl

Modulations of $|B|$

Modulations of n_{tot}

Modulations of switchbacks

Modulations of V_R
Suprathermals, enhanced A_{He} and higher Mach radial flows

- Suprathermal ions
- Alfven speed
- Proton core speed
- Proton beam speed
- Alpha speed
- Alpha flux/proton core flux
- Alpha abundance
- Radial field - switchbacks

Yellow bars for $A_{\text{He}} > 1\%$
Structures are pressure-balanced

- |B| R^2
- n_e R^2
- Electron pressure
- Magnetic field pressure
- Total pressure/\rho_s
- P/P_s
- Alpha abundance

Depressed |B|
Enhanced plasma pressure
Proton core pressure
Alpha pressure
Pressure balance
Ion temperatures are elevated, electron temperatures are depressed.
How do switchback patches evolve with distance?

• Encounter 6: PSP at 20 Rₚ, Orbiter at 208 Rₚ
 Both at similar latitude, cover same longitude range
• Ballistic map to 2.5Rₚ using measured solar wind speed
• Takes into account spacecraft motion; assumes corotating structures

Speed: **PSP**: structured, **Orbiter**: smooth

Bₚ: PSP: switchback patches, Orbiter: large scale folds

Spectra of speed and magnetic field variations with respect to source surface longitude

Speed: **PSP** microstreams (plumes?) smooth out by 1 AU at **Orbiter**

Magnetic field (angle to Parker spiral): peak at **PSP** (switchback patches) becomes large scale field variations: break in spectrum at **Orbiter**
B_T, B_N in upper panel
V_T, V_N in lower panel

|B| in upper panel
B_R in upper panel

A_He in lower panel
V_R in lower panel
Proton temperatures in lower panel
EPI-Lo ions in lower panel

Mapped ballistically into Carrington longitude

Yellow bars are enhanced A_He
Blue bars are hotter leading edge

• Structure is clustered near boundaries
• Switchbacks are clustered near leading edge
Polar representation
Superradial expansion gives $|B|$ depression in center
- $B_R \sim 1/r^2$
- $B_{(T,N)} \sim 1/r$
Observations

• Switchbacks are modulated on supergranulation angular scales
• Photospheric field has B^2 modulations on similar scales
• Pressure balanced – spatial structure at 20 Rs
• Structure is evolved out by 200 Rs
• Fast wind-like (higher) A_{He} and lower strahl energy – frozen-in from source, associated with open magnetic field
• Higher β and flow speed within structures
• Suprathermal ions to 85 ~keV
• Depressed $|B|$ – overexpansion of magnetic field below PSP – funnels
Conclusions?

• These are the solar wind remnants of coronal plumes/funnels and switchback occurrence and amplitude peaks within them
• This tells us something about the switchback source
 • Funnels at supergranulation boundaries
 • Network magnetic field
• This maybe tells us something about the switchback generation mechanism
 • Interchange reconnection at funnel/loop boundaries?
 • Alfven waves in overexpanding funnels?
• This maybe tells us something fundamental about coronal heating