Suprathermal electrons in Earth’s magnetotail: What can they teach us about flare electron energization?

Li-Jen Chen, Shan Wang, James Drake, Spiro Antiochos, Tai Phan
Acknowledgment

Thomas Moore
Barbara Giles
Robert Ergun
Craig Pollock
Michael Hesse
Rumi Nakamura
Kevin Genestreti
Adam Steiner
William Paterson

Barry Mauk
Robert Strangeway
Chris Russell
Ari Le
William Daughton
Jonathan Ng
John Dorelli
Conrad Schiff

Ian Cohen
James Burch
Yuri Khotyaintsev
Amitava Bhattacharjee
Andrew Fazakerley
Olivier LeContel
Stephen Fuselier
Lynn Wilson

Joe Fennel
Lindsay Glesener
Roy Torbert
Hantao Ji
Chris Mouikis
Benoit Lavraud
Rick Wilder
Levon Avanov

+ other MMS & CLUSTER team members
How are suprathermal electrons produced?

Up to 50% of flare released energy goes to suprathermal electrons [e.g., Lin+, 2003; Holman+, 2003; Krucker+, 2010; Krucker & Battaglia, 2014]

[Shibata et al., 1995]
Magnetic configuration & beta in solar flares are similar to those in the magnetotail.
Volume-filling magnetic islands?

Motivated by [Drake et al., Nature, 2006]

Later work: [Dahlin et al., PP, 2014, 2015; Arnold et al., PRL, 2021]
Energetic electrons in magnetic islands: magnetotail

[Chen et al., Nature Phys., 2008]

Islands are di scale, grew out of the electron current layer
[Chen et al., PP, 2012]

Signatures =? if islands are volume-filling
Use all MMS magnetotail passes (127 orbits in 4 years) to test out

- Whether volume-filling islands are dominant accelerators
- If primary energization occurs at the X line or downstream
90 keV e’s tend to be detected in regions with $B_z > 0$ and $V_{ix} \sim 0$

Events: flux > threshold

![Image showing a diagram with B_z and V_{ix} axes plotting the number of events.](image)
Solar flare

Magnetotail

[Lin et al., 2011]

$\begin{align*}
\text{Flux (1/cm}^2\text{-sr-s-keV)} \\
\text{Energy (keV)} \\
\text{Energy (keV)}
\end{align*}$

$n = 0.32$
$T_{\text{core}} = 1.4\text{keV}$
$\gamma = 4.0$
$W_{\text{break}} = 7.05\text{keV}$
$m_iV_A^2 = 20.01\text{keV}$
Solar flare

[Lin et al., 2011]

Magnetotail

20170724/12:58:55

\[n = 0.12 \]
\[T_{\text{core}} = 4.5 \text{keV} \]
\[\gamma = 3.9 \]
\[W_{\text{break}} = 21.34 \text{keV} \]
\[m_1 V_A^2 = 16.49 \text{keV} \]
Magnetotail (in earthward jet)

20170724/12:51:25

\[n = 0.08 \]
\[T_{\text{core}} = 5.4 \text{ keV} \]
\[\gamma = 3.5 \]
\[W_{\text{break}} = 38.36 \text{ keV} \]
\[m_i V_A^2 = 45.66 \text{ keV} \]
Magnetotail/Turbulence

20170726/07:37:20-07:37:23

[**Ergun et al., 2020**]

Intense heating!

\[
T_{\text{core}} = 8.0 \text{keV}
\]

Magnetotail/flux pileup

20170724/12:58:55

\[
n = 0.12, \quad T_{\text{core}} = 4.5 \text{keV}, \quad \gamma = 3.9, \quad W_{\text{break}} = 21.34 \text{keV}, \quad m_{l}V_{A}^{2} = 16.49 \text{keV}
\]
In the diffusion region, acceleration by E_{rec} can achieve: a few keV for e’s; a few tens of keV for ions.

[Torbert et al., Science, 2018; Bessho et al., GRL, 2018]

[Giles et al., GRL, 2021]
90 keV e’s only appear Earthward of the X-line: key acc. physics is in the closed field line region.

X-line (EDR) crossing in

[Torbert et al., Science, 2018]
90 keV e Flux more intense Earthward of the X-line: a higher density case for spectra analysis

X-line (3 EDRs) crossing in

[Chen et al., GRL, 2019]
thermal+double power laws

\begin{align*}
 n &= 1.24 \\
 T_{\text{core}} &= 0.3 \text{keV} \\
 \gamma &= 3.8 \\
 \gamma &= 2.1 \\
 W_{\text{break}} &= 1.78 \text{keV} \\
 m_i V_A^2 &= 6.06 \text{keV}
\end{align*}

20170703/05:35:27

Energy (keV)
PIC with flux rope kinks

Magnetotail reconnection outflow

20170703/05:35:27

\[
\frac{f(\varepsilon)}{\varepsilon/m_iV_A^2} = \begin{cases}
10^3 & \text{for } \varepsilon/m_iV_A^2 < 10^{-3} \\
10^6 & \text{for } 10^{-3} < \varepsilon/m_iV_A^2 < 10 \cdot 10^{-3} \\
10^8 & \text{for } 10 \cdot 10^{-3} < \varepsilon/m_iV_A^2 < 10^0 \\
10^{10} & \text{for } 10^0 < \varepsilon/m_iV_A^2 < 10^1 \\
10^{12} & \text{for } 10^1 < \varepsilon/m_iV_A^2 < 10^3 \\
10^{15} & \text{for } 10^3 < \varepsilon/m_iV_A^2 < 10^6 \\
10^{18} & \text{for } 10^6 \leq \varepsilon/m_iV_A^2 \end{cases}
\]

- Indices: $L_x = 300d_i$, $L_x = 150d_i$
- $\varphi = 4.3$

Flux (1/cm2-sr-s-keV)

- $n = 1.24$
- $T_{core} = 0.3$keV
- $\gamma = 3.8$, $\gamma = 2.1$
- $W_{break} = 1.78$keV
- $m_iV_A^2 = 6.06$keV
Summary

- Suprathermal e’s are primarily found in the earthward B pileup regions.
- Across the X line, earthward exhaust is favored.
- Statistical results do not support volume-filling islands as the dominant accelerators in the magnetotail.