

Observations of Flare (and CME) onset

Lyndsay Fletcher

School of Physics and Astronomy, University of Glasgow, UK and

Rosseland Centre for Solar Physics, University of Oslo, Norway

SolFER May 24 2021

Talk topics

Overview of some features appearing in the minutes before the flare impulsive phase (where this means strong HXRs, chromospheric footpoints)

- Coronal X-ray sources
- Early chromospheric ribbons
- Photospheric magnetic disturbances
- EUV/UV line broadening
- Pulsations/oscillations

Note – most observations presented here are M/X flares, most are eruptive, and we know that the CME acceleration correlates in time with HXR burst (Temmer+10) Caveat – Though I've tried to avoid phenomena reported for only one events, it's likely that none of the onset signatures reported here is universal.

Thermal preflare coronal sources

Battaglia+09 - 4 RHESSI events with pre-flare emission:

- Initially thermal coronal sources (T~20 MK)
- Coronal n_e~ few x 10⁹ cm⁻³, increasing over ~60s (interpreted as conduction-driven evaporation)
- Coronal non-thermal tail appears after ~60-100s
- Footpoints after another ~200s

Early-phase coronal heating precedes impulsive phase by minutes

Also e.g. Siarkowski+09, Awasthi+14, Battaglia+19

See also Simões talk & Hudson poster "hot onsets",

Non-thermal preflare coronal sources

Non-thermal sources can accompany thermal sources during the rise phase. Rare - possibly since pre-flare corona is not very dense

e.g. Lin+03, Veronig+06, Caspi & Lin 10

SOL2002-07-23 coronal source:

- Occurs prior to main impulsive phase
- No HXR footpoints evident
- Non-thermal component, varies on ~10s timescales
- $n_e \sim 10^{10} \text{ cm}^{-3}$
- Microwaves imply B_{cor} ~ 200G (Asai+06)

SOL2003-11-03: Veronig+06 observe pre-flare thermal to nonthermal evolution, and downwards source motion

Early appearance of flare ribbons - UV

- 9 events seen with TRACE 1600, Yohkoh HXT, BATSE (Warren & Warshall 01)
- All show UV ribbons preceding HXRs by minutes.
- Eventual HXR sources appear at slightly different locations from UV ribbons

TRACE 1600 (solid) & BATSE 25-100keV (dotted)

See also:

Fárnik & Savy 96, 98 - no clear spatial relationship between pre-flare & flare SXR sources (Yohkoh SXT)

Early appearance of flare ribbons - EUV

SOL2010-08-07 (Fletcher+13)

- EUV pre-flare ribbons appearing minutes before impulsive phase
- Heated to ~10MK
- Basically stationary, at essentially same locations as later HXR sources
- Showed insufficient energy in nonthermals electrons to heat pre-flare ribbons
- Also not clear that conduction can heat pre-flare ribbons.

See also Simões+15 – early hot footpoints

Photospheric field changes - timing

Flare-related non-reversing changes in the photospheric field are well known (e.g. Wang+94, Kosovichev+Zharkova01 Sudol+Harvey 05, Petrie+Sudol 10)

Timing of changes with respect to other flare signatures is less well studied

$$t_s = t_o - \frac{\pi}{2n}; \ t_o; \ t_e = t_o + \frac{\pi}{2n}$$

Timing of field changes and HXRs in 5 X flares (Burtseva+15) GONG field changes fitted with

$$B(t) = a + b(t) + c\left(1 + \frac{2}{\pi}\tan^{-1}(n(t - t_0))\right)$$

3 biggest flares: flux change peaks 1-4 mins *before* main RHESSI HXRs (GONG uncertainty \pm 0.3 min) Strong field re-organisation precedes acceleration

Photospheric field changes - position

Map of 'c' parameter (strength of field change) with RHESSI source centroids superposed

In all flares studied, good correspondence of early HXR sources and strongest field changes

Liu+18 – SOL20150622 Goode Solar Telescope: field changes sweep across photosphere with the flare ribbons (as identified in Hα red wing)

Pre-flare line broadening -TR/upper chromosphere

IRIS line broadening in the Si IV line 80,000K (Jeffrey+2018)
1.7s cadence => very detailed pre-flare evolution

- v_{nth} varies on a timescale of 10s • v_{nth} increases *before* the flare, and decreases as the flare heats. • 'non-thermal' KE before flare ~ thermal energy
 - 'non-thermal' KE before flare ~ thermal energy of the 80,000K flare plasma

=> Energy transferred from turbulence to plasma on 10s timescale

Pre-flare coronal line broadening

Hinode/EIS coronal line broadening SOL2013-05-15, with HXRs (Kontar+17)

Ratio of turbulent KE to non-thermal electron power is ~ 1 - 10s => electron acceleration with turbulence loading/dissipation timescale ~ 1-10s

Long-duration pre-flare coronal line broadening

Harra+13: EIS increase in non-thermal Fe XII 195Å observations of line width preceding 4 M/X flares by 10s of minutes

Non-thermal width enhancements at base of active region loops (A,B) and also corona (C) in eruptive events

Also Harra+09 – broadening increasing for some hours prior to major eruption, associated with helicity injection (Magara & Tsuneta 08)

Preflare oscillations

SOL2014-09-10 – alternating red/blueshifts, brightening and broadening in pre-flare sigmoid (interpreted as flux rope) Zhou+16

See also Tan+16: ~ 30% of (412) flares studied show long period pulsations in SXR light curves, T=8-30 minutes, from 1-2h before flare

- Clear evidence that the solar atmosphere is 'gearing up' for a flare, some minutes (or even longer) in advance of the impulsive phase
- Includes thermal and non-thermal coronal sources, strong changes in the magnetic field orientation, presence of turbulent broadening, heating of lower atmosphere, oscillatory behaviour
- Field changes preceding HXR footpoint emission (electron acceleration) by 10s of seconds are particularly intriguing
- Interesting suggestions that turbulence leads to heating and acceleration in both corona and lower atmosphere
- Are these phenomena rare or common? Unclear requires studies with large samples