

Plasmoid-dominated turbulent reconnectionin a low-β plasma[Astrophys. J. Lett., 894, L7 (2020)]

Seiji ZENITANI (Kobe U, Japan)

Takahiro MIYOSHI (Hiroshima U, Japan)

MHD models of magnetic reconnection

MHD simulation

- 30,000 x 3,000 (x 2) grid points
- 500 cores on a supercomputer or 1 GPU (NVIDIA A100)

Simulation results (Movies)

https://sci.nao.ac.jp/MEMBER/zenitani/files/b02_outflowB.mp4

https://sci.nao.ac.jp/MEMBER/zenitani/files/b02_divvB.mp4

div V - Compression in red

Normal shocks: Analogy to wings

Subsonic $(V \leftrightarrow c_s)$ Signatures of transonic/supersonic flow Plasmoid moves at Alfvén speed, • which is transonic/supersonic in Transonic the β << 1 regime. $(0.8c_{s} < V)$ (b) t = 250 t= 250.0 x10⁰ 15 1,20 10 0,72 Supersonic 5 0.24 $(c_s < V)$ Ν 0 -0,24 -5 -0,72 -10 -15 -1 20 0 20 40 60 80 100 120 Х SZ & Miyoshi 2011, 2015

See also https://www.youtube.com/watch?v=80IqfCTAZQo

Estimating the reconnection rate

- Rate of the mini S-P layer is controlled by the compression ratio and the aspect ratio (Hesse+ 2011)
- We assume that the typical aspect ratio is similar.
- Global reconnection rate should scale like the compression ratio.

$$\mathcal{R}_{\rm sp} \equiv \frac{v_{in}}{c_A} = \frac{2\gamma(1+\beta)}{3(\gamma-1)+2\gamma\beta} \left(\frac{\delta}{L}\right)$$
$$\left(\frac{\delta}{L}\right) \approx S_{\rm crit}^{-1/2} = \text{const.}$$
$$\langle \mathcal{R} \rangle \sim \mathcal{R}_{\rm sp} \propto \frac{2\gamma(1+\beta)}{3(\gamma-1)+2\gamma\beta}$$

Simulation vs Theory

- Compression ratio (theoretical prediction) is a function of (β, γ)
- Numerical survey for $\beta = [0.2, 0.5, 1.0, 2.0, 5.0]$, $\gamma = [1.33, 1.5, 1.67, 2.0]$
- Rec. rate (simulation) is proportional to the compression ratio

SZ & Miyoshi 2020

Summary

- Plasmoid-dominated reconnection for $\beta <\!\!< 1$
 - Visible signature: Normal slow shocks
 - Higher reconnection rate
 - Rec. rate can be accelerated to ~0.02 in the $\beta{\rightarrow}0$ limit
 - Energy balance: quasi-periodic behavior

• Reference

- Zenitani & Miyoshi, ApJL, 894, L7 (2020)
- GPU-ready simulation code is available --- Search "OpenMHD"