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During a flare, magnetic energy is converted into other forms of energy:

Energy release and partition in solar flares

thermal
kinetic 

(turbulence)non-thermal

Emslie et al. 2012

A substantial fraction of released energy goes into non-thermal electrons!

Solar flare energy partition
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Solar flare X-rays and energetic electronsElectron transport at the Sun
10

Figure 2. Warm-target fitting of flare SOL2013-05-13T02:12. The RHESSI X-ray count spectrum (black)
integrated over a one minute time period from 02:09-02:10 UT. The primary fitting functions of f vth
(isothermal, red) and f thick warm (warm target, green) are shown, and the parameters of f thick warm
are printed in the plot legend (blue - free parameters + uncertainties, pink - determined fixed plasma
parameters + uncertainties). The count spectrum is fitted between the energies of 10-100 keV (this avoids
line and instrumental features below 10 keV). The RHESSI background (grey) begins to dominate at 100
keV. The full fit (blue) consists of f vth+f thick warm+albedo+pile up+line (at 10keV). The fit residuals
are plotted below the spectrum with a reduced �2 value of �2 = 1.1. The residuals show a poorer fit at
15-20 keV. This is likely due to the use of an isothermal approximation ?.

10

Figure 2. Warm-target fitting of flare SOL2013-05-13T02:12. The RHESSI X-ray count spectrum (black)
integrated over a one minute time period from 02:09-02:10 UT. The primary fitting functions of f vth
(isothermal, red) and f thick warm (warm target, green) are shown, and the parameters of f thick warm
are printed in the plot legend (blue - free parameters + uncertainties, pink - determined fixed plasma
parameters + uncertainties). The count spectrum is fitted between the energies of 10-100 keV (this avoids
line and instrumental features below 10 keV). The RHESSI background (grey) begins to dominate at 100
keV. The full fit (blue) consists of f vth+f thick warm+albedo+pile up+line (at 10keV). The fit residuals
are plotted below the spectrum with a reduced �2 value of �2 = 1.1. The residuals show a poorer fit at
15-20 keV. This is likely due to the use of an isothermal approximation ?.

Collisional effects:
- cold-target model.

X-ray transport effects:
- Compton scattering in the 

photosphere (albedo).

Non-collisional effects:

e.g. Jeffrey et al. 2014 
Kontar et al. 2015, 2019

e.g. Bai & Ramaty 1978, 
Jeffrey & Kontar 2011

e.g. Knight & Sturrock 1977, Zharkova 
& Gordovskyy 2006, Alaoui et al. 2021

- return currents

Posters today: M. Alaoui, V. Zharkova

e.g. Kontar et al. 2014 
Musset et al. 2018

- turbulent scattering

Next talk: L Vlahos

At the Sun, electrons undergo collisional and non-collisional transport processes 

X-ray  
energy 

spectrum

Accelerated 
electron 

properties?
e.g. Brown 1971

- warm-target model.
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Combined RHESSI X-ray imaging and X-ray spectroscopy suggests the presence of 
strong vertical temperature, T, and number density, n, gradients in the corona.

z

Multi-thermal flaring corona

z

T

n2A
Jeffrey et al. (2015)

Different conditions…
Continued acceleration…

Different electron properties…

z

Flaring coronal plasma properties



The transport of solar flare energy

In the past, electron transport was described by a cold thick-target model (CTTM) 
e.g. Brown 1971, Brown & Emslie 1988

probing solar flare particle acceleration with X-ray polarization 3

Equation (1) models electron-electron energy losses,
the dominant electron energy loss mechanism in the
flaring plasma, and both electron-electron and electron-
proton interactions for collisional pitch-angle scattering.
Equation (1) can be easily generalized to model any
particle-particle collisions.
Here, we also want to study how non-collisional trans-

port e↵ects such as turbulent scattering change the elec-
tron distribution and the resulting X-ray polarization.
For this we use an isotropic turbulent scattering ap-
proximation1 (e.g. Schlickeiser 1989) where the turbu-
lent scattering di↵usion coe�cient DT

µµ
is related to the

turbulent scattering mean free path �s using

D
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µµ
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�
. (4)

In this simple model, �s is the turbulent scattering
mean free path. It is related to the level of turbulent
magnetic field fluctuations �B/B by
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and by changing �s di↵erent levels of turbulence can
be investigated.
In simulations where we investigate the role of non-

collisional turbulent scattering, the governing Fokker-
Planck equation becomes:
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It is likely that there are other non-collisional ef-
fects which can change the electron properties, such
as beam-driven Langmuir wave turbulence (Hannah
et al. 2009), electron re-acceleration (Brown et al. 2009)
and/or beam-driven return current (Knight & Sturrock
1977; Emslie 1980; Zharkova & Gordovskyy 2006; Alaoui
& Holman 2017), but this is beyond the scope of the pa-
per.
Non-collisional turbulent scattering operates on a

timescale shorter than collisional scattering and can
produce greater isotropy, and hence trapping, amongst
higher energies electrons, than from collisional scatter-
ing. By combining X-ray imaging spectroscopy and

1 We use this model for turbulent scattering since the details of
scattering in the flaring corona are not well-constrained, i.e. there
are many models but few observations.

radio observations of the gyrosynchrotron radiation,
Musset et al. (2018) state that

�s = �s,0[cm]

✓
25[keV]

E

◆
. (7)

Importantly, in this model higher energy electrons have
a smaller turbulent mean free path than lower energy
electrons.
Following Je↵rey et al. (2014), and re-writting Equa-

tion (6) as a Kolmogorov forward equation (Kolmogorov
1931), Equation (6) can be converted to a set of time-
independent stochastic di↵erential equations (SDEs)
(e.g., Gardiner 1986; Strauss & E↵enberger 2017) that
describe the evolution of z, E, and µ in Itô calculus:

zj+1 = zj + µj �s ; (8)
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(10)

�s [cm] is the step size along the particle path, and
Wµ, WE are random numbers drawn from Gaussian dis-
tributions with zero mean and a unit variance represent-
ing the corresponding Wiener processes (e.g. Gardiner
1986). A simulation step size of �s = 105 cm is used
in all simulations, and E, µ and z are updated at each
step j. A step size of �s = 105 cm is approximately
two orders of magnitude smaller than the thermal col-
lisional length in a dense (n = 1011 cm�3) plasma with
T � 10 MK (or the collisional length of an electron with
an energy of 1 keV or greater, in a cold plasma). The
derivation of Equation (6) and the detailed description
of the simulations can be found in Je↵rey et al. (2014).
Equation (6) (and Equations (9) and (10)) diverge

as E ! 0, and as discussed in Je↵rey et al. (2014),

the deterministic equation Ej+1 =
h
E

3/2

j
+ 3�m

2
e

2
p
⇡kBT

�s

i

must be used for low energies where Ej  Elow using

But, we need full collisional modelling:

2nd order effects - energy 
diffusion/thermalisation.
Takes into account the 
coronal plasma properties.

e.g. Jeffrey et al. 2014, Jeffrey et al. 2019

Flare electron transport: collisions

“warm-target model”



e.g. Kontar et al. 2015, Kontar, Jeffrey, Emslie 2019

corona and by the gradual escape of electrons into the cold
chromosphere (see Kontar et al. 2015 for details). In general,
the shorter the electron mean-free path, the smaller the value of
Emin (Equation (6)), so the larger the number of electrons that
will thermalize, and hence accumulate, in the corona
(Equation (5)).

Equation (5) replaces the cold thick-target result(2). The
coronal parameters T, n, and L that determine the value of Emin,
hence the form of nVF Eá ñ( ), can best be obtained from a
combination of X-ray spectroscopy and imaging observations:
the distance between the coronal source and footpoint
straightforwardly gives L, while the thermal fit to the HXR
spectrum below ∼25keV gives both the emission measure

n VEM 2= , and the temperatureT.
For loop lengths L;109 cm and coronal densities of order

1011cm−3 or larger, electrons at quite substantial energies up to
E;20 keV are thermalized in the corona, and rather than
becoming “lost” from the system (as they do in the cold thick-
target formulation), they now make a significant, and observable,
thermal contribution to the HXR spectrum. This reduces the need
for accelerated electrons in this energy range to create the HXR
photons observed in this energy range and, as a result, the mean
source electron spectrum nVF Eá ñ( ) needs to extend down only to
fairly moderate energies, E. This effectively introduces a cutoff
energy Ec into the form of nVF Eá ñ( ), concomitantly reducing
the required power in accelerated nonthermal electrons (see
Equation (2)). To quantify this effect, we write Equation (5)
in a simplified form, obtained by replacing the function
G E k T E k TB Bp¢ ¢�( ) (an approximation valid in the range
EkBT), giving
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where we have used the fact that N E0˙ ( ) peaks at an energy Ec

substantially outside the EkT range of the approximation
and have defined
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Then Equation (7) can be rewritten in the Maxwellian form

nVF E
m

E
k T

eEM
8

, 9
e

E k T

B
3 2

B

p
á ñ = D -( )

( )
( )

where the emission measure

K
m

k T
N

E
EM

8
. 10e

B
2 0

min
1 2

p
D � ( )

˙
( )

ΔEM quantifies the additional contribution to the overall
inferred soft X-ray emission measure that results from the
thermalization of accelerated electrons; it is a function of Emin,
a quantity that characterizes the fraction of the accelerated
electron distribution that thermalizes in the hot coronal part of
the loop. The value of Emin depends on the thermal collisional
mean-free path λ like T L4 4l (Equation (6)), so that Emin

1 2 ~
T L T n L1 2 2 2 9 2 2 2l ~ and thus N n L TEM 0

2 2 5 2D µ -˙ .

Only electrons from the injected distribution with energy
E KnL21 are essentially considered as thermalized and
hence contribute to ΔEM; electrons with energy in excess of
this value can be treated as electrons interacting with a cold
target in the conventional manner. Evidently, when the low-
energy cutoff E KnL2c< , a substantial contribution ΔEM is
expected.
In the model of Kontar et al. (2015), the growth of emission

measure in the thermal plasma due to the thermalization of
freshly injected low-energy energetic electrons in the coronal
part of a flare loop is balanced with the diffusion of thermal
electrons out of the hot coronal part of the loop into the
chromosphere. This balance is achieved over a time corresp-
onding to that for electron diffusion along the loop:

L
D

, 11diff

2
t � ( )

where D k T me eB t= is the thermal diffusion coefficient, and
m k T e n lne e B

3 2 4t p L� ( ) is the thermal electron collision
time. Using n 1011= cm−3, L=109 cm, and T=20MK, one
finds τe;10−2 s, D;3×1018 cm2s−1, and τdiff;30 s.
This diffusion timescale is comparable to the thermalization
time for collisional (Spitzer 1962) thermal conduction, and it is
sufficiently rapid that a steady-state balance can be achieved
within the time associated with HXR intensity fluctuations. We
also note (see above) that N n T N n DEM ;0

2 5 2
0D µ µ-˙ ˙

low diffusion coefficients lead to effective trapping of electrons
and hence to a large emission measure from thermalized
electrons.
For E?kBT, Equation (5) reduces to the cold thick-target

form(2). Thus, we can approximate Equation (5) as the sum of
a “thermal part” and a “nonthermal part”:
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and it should be noted that when the low-energy cutoff in the
injected distribution Ec is larger than the energy KnL2 that
can be effectively stopped within the coronal part of the loop,
the contribution ΔEM of the thermal component becomes
negligible and the cold-target approximation is recovered.
Equation (12), with a form of N E0˙ ( ) that assumes a power-law

form at high energies, has been included in the Solar SoftWare
(SSW) and OSPEX routines as the function f_thick_warm.pro.6

The convolution of the mean source electron spectrum function
nVF Eá ñ( ) obtained from Equation (12) with the bremsstrahlung
cross section Q E,�( ) (e.g., Haug 1997) determines the HXR
flux, and by minimizing χ2, the best-fit parameters can be
found. The proper use of the expression(12) will be
demonstrated in Section 4. It is instructive to note that
Equation (12) is a good approximation to Equation (5) when
E KnL2 ;c< this is readily seen from Figures 3 through5 in
Kontar et al. (2015).
The above choice of a power-law form is, of course, not

unique. For example, Bian et al. (2014) have demonstrated that
the stochastic acceleration of electrons in the presence of both

6 See OSPEX package https://hesperia.gsfc.nasa.gov/ssw/packages/xray/
idl/f_thick_warm.pro.
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ΔEM quantifies the additional contribution to the overall
inferred soft X-ray emission measure that results from the
thermalization of accelerated electrons; it is a function of Emin,
a quantity that characterizes the fraction of the accelerated
electron distribution that thermalizes in the hot coronal part of
the loop. The value of Emin depends on the thermal collisional
mean-free path λ like T L4 4l (Equation (6)), so that Emin
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Only electrons from the injected distribution with energy
E KnL21 are essentially considered as thermalized and
hence contribute to ΔEM; electrons with energy in excess of
this value can be treated as electrons interacting with a cold
target in the conventional manner. Evidently, when the low-
energy cutoff E KnL2c< , a substantial contribution ΔEM is
expected.
In the model of Kontar et al. (2015), the growth of emission

measure in the thermal plasma due to the thermalization of
freshly injected low-energy energetic electrons in the coronal
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chromosphere. This balance is achieved over a time corresp-
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injected distribution Ec is larger than the energy KnL2 that
can be effectively stopped within the coronal part of the loop,
the contribution ΔEM of the thermal component becomes
negligible and the cold-target approximation is recovered.
Equation (12), with a form of N E0˙ ( ) that assumes a power-law

form at high energies, has been included in the Solar SoftWare
(SSW) and OSPEX routines as the function f_thick_warm.pro.6

The convolution of the mean source electron spectrum function
nVF Eá ñ( ) obtained from Equation (12) with the bremsstrahlung
cross section Q E,�( ) (e.g., Haug 1997) determines the HXR
flux, and by minimizing χ2, the best-fit parameters can be
found. The proper use of the expression(12) will be
demonstrated in Section 4. It is instructive to note that
Equation (12) is a good approximation to Equation (5) when
E KnL2 ;c< this is readily seen from Figures 3 through5 in
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The above choice of a power-law form is, of course, not

unique. For example, Bian et al. (2014) have demonstrated that
the stochastic acceleration of electrons in the presence of both
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where:
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the shorter the electron mean-free path, the smaller the value of
Emin (Equation (6)), so the larger the number of electrons that
will thermalize, and hence accumulate, in the corona
(Equation (5)).
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hence the form of nVF Eá ñ( ), can best be obtained from a
combination of X-ray spectroscopy and imaging observations:
the distance between the coronal source and footpoint
straightforwardly gives L, while the thermal fit to the HXR
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the required power in accelerated nonthermal electrons (see
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ΔEM quantifies the additional contribution to the overall
inferred soft X-ray emission measure that results from the
thermalization of accelerated electrons; it is a function of Emin,
a quantity that characterizes the fraction of the accelerated
electron distribution that thermalizes in the hot coronal part of
the loop. The value of Emin depends on the thermal collisional
mean-free path λ like T L4 4l (Equation (6)), so that Emin

1 2 ~
T L T n L1 2 2 2 9 2 2 2l ~ and thus N n L TEM 0

2 2 5 2D µ -˙ .

Only electrons from the injected distribution with energy
E KnL21 are essentially considered as thermalized and
hence contribute to ΔEM; electrons with energy in excess of
this value can be treated as electrons interacting with a cold
target in the conventional manner. Evidently, when the low-
energy cutoff E KnL2c< , a substantial contribution ΔEM is
expected.
In the model of Kontar et al. (2015), the growth of emission

measure in the thermal plasma due to the thermalization of
freshly injected low-energy energetic electrons in the coronal
part of a flare loop is balanced with the diffusion of thermal
electrons out of the hot coronal part of the loop into the
chromosphere. This balance is achieved over a time corresp-
onding to that for electron diffusion along the loop:

L
D

, 11diff

2
t � ( )

where D k T me eB t= is the thermal diffusion coefficient, and
m k T e n lne e B

3 2 4t p L� ( ) is the thermal electron collision
time. Using n 1011= cm−3, L=109 cm, and T=20MK, one
finds τe;10−2 s, D;3×1018 cm2s−1, and τdiff;30 s.
This diffusion timescale is comparable to the thermalization
time for collisional (Spitzer 1962) thermal conduction, and it is
sufficiently rapid that a steady-state balance can be achieved
within the time associated with HXR intensity fluctuations. We
also note (see above) that N n T N n DEM ;0

2 5 2
0D µ µ-˙ ˙

low diffusion coefficients lead to effective trapping of electrons
and hence to a large emission measure from thermalized
electrons.
For E?kBT, Equation (5) reduces to the cold thick-target

form(2). Thus, we can approximate Equation (5) as the sum of
a “thermal part” and a “nonthermal part”:
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and it should be noted that when the low-energy cutoff in the
injected distribution Ec is larger than the energy KnL2 that
can be effectively stopped within the coronal part of the loop,
the contribution ΔEM of the thermal component becomes
negligible and the cold-target approximation is recovered.
Equation (12), with a form of N E0˙ ( ) that assumes a power-law

form at high energies, has been included in the Solar SoftWare
(SSW) and OSPEX routines as the function f_thick_warm.pro.6

The convolution of the mean source electron spectrum function
nVF Eá ñ( ) obtained from Equation (12) with the bremsstrahlung
cross section Q E,�( ) (e.g., Haug 1997) determines the HXR
flux, and by minimizing χ2, the best-fit parameters can be
found. The proper use of the expression(12) will be
demonstrated in Section 4. It is instructive to note that
Equation (12) is a good approximation to Equation (5) when
E KnL2 ;c< this is readily seen from Figures 3 through5 in
Kontar et al. (2015).
The above choice of a power-law form is, of course, not

unique. For example, Bian et al. (2014) have demonstrated that
the stochastic acceleration of electrons in the presence of both

6 See OSPEX package https://hesperia.gsfc.nasa.gov/ssw/packages/xray/
idl/f_thick_warm.pro.
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The determination of electron parameters is sensitive to the coronal parameters 

Warm target model: application to X-ray data

EM0=(7.37±0.45)x1048 cm-3

T=(2.52±0.04) keV
Tloop=(2.52±0.04) keV
nloop=(9.3±2.2)x1010 cm-3

L=(17.0±3.5) Mm

     =(0.7±0.1)x1035 s-1

      =4.14±0.03
Ec=(29.0±1.9) keV
P=(4.8±0.8)x1027 erg s-1
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[ For SOL2013-05-13T02:12, we find P = (5.7± 1.3)⇥ 1027 erg s�1. ]

All the major fit parameters for f vth and f thick warm for SOL2013-05-13T02:12
are shown in Table ??. Using the derived plasma parameters, we calculate a value of
⌧di↵ ⇠ 30 s, showing that the one minute observation time is well justified here.

Parameter Fit status

f
vt
h EM = (7.45± 0.20)⇥ 1048 cm�3 Fixed, found from cold-target fitting

T = (2.51± 0.01) keV Fixed, found from cold-target fitting

f
th
ic
k
w
ar
m

Ṅ0 = (0.9± 0.2)⇥ 1035 s�1 Free, found from warm-target fitting

�low = 4.20± 0.02 Free, found from warm-target fitting

Ec = (27.4± 1.9) keV Free, found from warm-target fitting

nloop = (9.3± 2.2)⇥ 1010 cm�3 Fixed using EM & V (from imaging)

Tloop = (2.51± 0.01) keV Fixed and equal to T (f vth)

L = (17.0± 3.5) Mm Fixed from imaging

P = (5.7± 1.3)⇥ 1027 erg s�1 Determined from Ṅ0, �low, Ec

Table 1. Best-fit parameters of f vth and f thick warm for the spectrum shown in Figure ??. Only the
f thick warm parameters related to the accelerated electron distribution (i.e., Ṅ0, �, Ec) are left free during
warm-target fitting. The plasma parameters (i.e., EM, T, n, L) are determined using a combination of X-ray
spectroscopy and imaging, and then fixed during fitting.

4.2. Comparison with simple analytic estimates.

A crude estimate of the cuto↵ energy Ec can be obtained by considering the energy at which the
systematic energy loss rate vanishes in the Fokker-Planck equation governing the evolution of the
nonthermal electron spectrum. ? used this method to obtain the approximate result E⇤

c
' � ⇥ kBT .

Although this provides a useful, and easily applied, estimate of Ec and hence of the electron power
P (Equation (??)), it should be stressed that this simplified expression corresponds simply to the
value at which the nonthermal component of hnV F i(E) = 0; below this value of E⇤

c
the value of

hnV F i(E) is not zero, but in fact negative. Thus the value E⇤
c
is an underestimate of the actual

low-energy cuto↵ given by the forward-fitting method above. Using Tloop ' 2.5 keV and � = 4.2, the
simple estimate E⇤

c
= � ⇥ Tloop [keV] gives E⇤

c
' 10 keV; this was the approach used by ?. However,

the actual value determined by the warm-target forward-fit method above was Ec ' 27 keV, some
three times larger than this simple estimate, and corresponding to a power that is about two orders
of magnitude lower (Equation (??)).

4.3. Influence of the thermal parameters on the inferred value of the electron power

Of the three warm-target parameters nloop, Tloop and L, only Tloop can be obtained solely from the
HXR spectrum; the other two parameters nloop and L can only be obtained by adding information
from X-ray imaging. It is therefore instructive to investigate how variations in each of the thermal
parameters change the resulting values of the nonthermal electron parameters, in particular Ec and
P .
In the three sets of panels in Figure ??, we plot the values of Ec and P . The top two panels show

the variations with L for fixed values of Tloop and nloop; the middle panels show the variations with
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[ For SOL2013-05-13T02:12, we find P = (5.7± 1.3)⇥ 1027 erg s�1. ]

All the major fit parameters for f vth and f thick warm for SOL2013-05-13T02:12
are shown in Table ??. Using the derived plasma parameters, we calculate a value of
⌧di↵ ⇠ 30 s, showing that the one minute observation time is well justified here.

Parameter Fit status

f
vt
h EM = (7.45± 0.20)⇥ 1048 cm�3 Fixed, found from cold-target fitting

T = (2.51± 0.01) keV Fixed, found from cold-target fitting

f
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Ṅ0 = (0.9± 0.2)⇥ 1035 s�1 Free, found from warm-target fitting

�low = 4.20± 0.02 Free, found from warm-target fitting

Ec = (27.4± 1.9) keV Free, found from warm-target fitting

nloop = (9.3± 2.2)⇥ 1010 cm�3 Fixed using EM & V (from imaging)

Tloop = (2.51± 0.01) keV Fixed and equal to T (f vth)

L = (17.0± 3.5) Mm Fixed from imaging

P = (5.7± 1.3)⇥ 1027 erg s�1 Determined from Ṅ0, �low, Ec

Table 1. Best-fit parameters of f vth and f thick warm for the spectrum shown in Figure ??. Only the
f thick warm parameters related to the accelerated electron distribution (i.e., Ṅ0, �, Ec) are left free during
warm-target fitting. The plasma parameters (i.e., EM, T, n, L) are determined using a combination of X-ray
spectroscopy and imaging, and then fixed during fitting.

4.2. Comparison with simple analytic estimates.

A crude estimate of the cuto↵ energy Ec can be obtained by considering the energy at which the
systematic energy loss rate vanishes in the Fokker-Planck equation governing the evolution of the
nonthermal electron spectrum. ? used this method to obtain the approximate result E⇤

c
' � ⇥ kBT .

Although this provides a useful, and easily applied, estimate of Ec and hence of the electron power
P (Equation (??)), it should be stressed that this simplified expression corresponds simply to the
value at which the nonthermal component of hnV F i(E) = 0; below this value of E⇤

c
the value of

hnV F i(E) is not zero, but in fact negative. Thus the value E⇤
c
is an underestimate of the actual

low-energy cuto↵ given by the forward-fitting method above. Using Tloop ' 2.5 keV and � = 4.2, the
simple estimate E⇤

c
= � ⇥ Tloop [keV] gives E⇤

c
' 10 keV; this was the approach used by ?. However,

the actual value determined by the warm-target forward-fit method above was Ec ' 27 keV, some
three times larger than this simple estimate, and corresponding to a power that is about two orders
of magnitude lower (Equation (??)).

4.3. Influence of the thermal parameters on the inferred value of the electron power

Of the three warm-target parameters nloop, Tloop and L, only Tloop can be obtained solely from the
HXR spectrum; the other two parameters nloop and L can only be obtained by adding information
from X-ray imaging. It is therefore instructive to investigate how variations in each of the thermal
parameters change the resulting values of the nonthermal electron parameters, in particular Ec and
P .
In the three sets of panels in Figure ??, we plot the values of Ec and P . The top two panels show

the variations with L for fixed values of Tloop and nloop; the middle panels show the variations with

EM0=(6.51±0.30)x1048 cm-3

T=(2.52±0.03) keV
Tloop=(2.52±0.03) keV
nloop=(8.7±2.1)x1010 cm-3

L=(17.0±3.5) Mm

    =(12.8±0.6)x1035 s-1

     =4.25±0.02
Ec=(12.1±0.3) keV
P=(35.8±1.9)x1027 erg s-1
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[ For SOL2013-05-13T02:12, we find P = (5.7± 1.3)⇥ 1027 erg s�1. ]

All the major fit parameters for f vth and f thick warm for SOL2013-05-13T02:12
are shown in Table ??. Using the derived plasma parameters, we calculate a value of
⌧di↵ ⇠ 30 s, showing that the one minute observation time is well justified here.

Parameter Fit status

f
vt
h EM = (7.45± 0.20)⇥ 1048 cm�3 Fixed, found from cold-target fitting

T = (2.51± 0.01) keV Fixed, found from cold-target fitting
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Ṅ0 = (0.9± 0.2)⇥ 1035 s�1 Free, found from warm-target fitting

�low = 4.20± 0.02 Free, found from warm-target fitting

Ec = (27.4± 1.9) keV Free, found from warm-target fitting

nloop = (9.3± 2.2)⇥ 1010 cm�3 Fixed using EM & V (from imaging)

Tloop = (2.51± 0.01) keV Fixed and equal to T (f vth)

L = (17.0± 3.5) Mm Fixed from imaging

P = (5.7± 1.3)⇥ 1027 erg s�1 Determined from Ṅ0, �low, Ec

Table 1. Best-fit parameters of f vth and f thick warm for the spectrum shown in Figure ??. Only the
f thick warm parameters related to the accelerated electron distribution (i.e., Ṅ0, �, Ec) are left free during
warm-target fitting. The plasma parameters (i.e., EM, T, n, L) are determined using a combination of X-ray
spectroscopy and imaging, and then fixed during fitting.

4.2. Comparison with simple analytic estimates.

A crude estimate of the cuto↵ energy Ec can be obtained by considering the energy at which the
systematic energy loss rate vanishes in the Fokker-Planck equation governing the evolution of the
nonthermal electron spectrum. ? used this method to obtain the approximate result E⇤

c
' � ⇥ kBT .

Although this provides a useful, and easily applied, estimate of Ec and hence of the electron power
P (Equation (??)), it should be stressed that this simplified expression corresponds simply to the
value at which the nonthermal component of hnV F i(E) = 0; below this value of E⇤

c
the value of

hnV F i(E) is not zero, but in fact negative. Thus the value E⇤
c
is an underestimate of the actual

low-energy cuto↵ given by the forward-fitting method above. Using Tloop ' 2.5 keV and � = 4.2, the
simple estimate E⇤

c
= � ⇥ Tloop [keV] gives E⇤

c
' 10 keV; this was the approach used by ?. However,

the actual value determined by the warm-target forward-fit method above was Ec ' 27 keV, some
three times larger than this simple estimate, and corresponding to a power that is about two orders
of magnitude lower (Equation (??)).

4.3. Influence of the thermal parameters on the inferred value of the electron power

Of the three warm-target parameters nloop, Tloop and L, only Tloop can be obtained solely from the
HXR spectrum; the other two parameters nloop and L can only be obtained by adding information
from X-ray imaging. It is therefore instructive to investigate how variations in each of the thermal
parameters change the resulting values of the nonthermal electron parameters, in particular Ec and
P .
In the three sets of panels in Figure ??, we plot the values of Ec and P . The top two panels show

the variations with L for fixed values of Tloop and nloop; the middle panels show the variations with
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All the major fit parameters for f vth and f thick warm for SOL2013-05-13T02:12
are shown in Table ??. Using the derived plasma parameters, we calculate a value of
⌧di↵ ⇠ 30 s, showing that the one minute observation time is well justified here.

Parameter Fit status

f
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h EM = (7.45± 0.20)⇥ 1048 cm�3 Fixed, found from cold-target fitting

T = (2.51± 0.01) keV Fixed, found from cold-target fitting
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Ṅ0 = (0.9± 0.2)⇥ 1035 s�1 Free, found from warm-target fitting

�low = 4.20± 0.02 Free, found from warm-target fitting

Ec = (27.4± 1.9) keV Free, found from warm-target fitting

nloop = (9.3± 2.2)⇥ 1010 cm�3 Fixed using EM & V (from imaging)

Tloop = (2.51± 0.01) keV Fixed and equal to T (f vth)

L = (17.0± 3.5) Mm Fixed from imaging

P = (5.7± 1.3)⇥ 1027 erg s�1 Determined from Ṅ0, �low, Ec

Table 1. Best-fit parameters of f vth and f thick warm for the spectrum shown in Figure ??. Only the
f thick warm parameters related to the accelerated electron distribution (i.e., Ṅ0, �, Ec) are left free during
warm-target fitting. The plasma parameters (i.e., EM, T, n, L) are determined using a combination of X-ray
spectroscopy and imaging, and then fixed during fitting.

4.2. Comparison with simple analytic estimates.

A crude estimate of the cuto↵ energy Ec can be obtained by considering the energy at which the
systematic energy loss rate vanishes in the Fokker-Planck equation governing the evolution of the
nonthermal electron spectrum. ? used this method to obtain the approximate result E⇤

c
' � ⇥ kBT .

Although this provides a useful, and easily applied, estimate of Ec and hence of the electron power
P (Equation (??)), it should be stressed that this simplified expression corresponds simply to the
value at which the nonthermal component of hnV F i(E) = 0; below this value of E⇤

c
the value of

hnV F i(E) is not zero, but in fact negative. Thus the value E⇤
c
is an underestimate of the actual

low-energy cuto↵ given by the forward-fitting method above. Using Tloop ' 2.5 keV and � = 4.2, the
simple estimate E⇤

c
= � ⇥ Tloop [keV] gives E⇤

c
' 10 keV; this was the approach used by ?. However,

the actual value determined by the warm-target forward-fit method above was Ec ' 27 keV, some
three times larger than this simple estimate, and corresponding to a power that is about two orders
of magnitude lower (Equation (??)).

4.3. Influence of the thermal parameters on the inferred value of the electron power

Of the three warm-target parameters nloop, Tloop and L, only Tloop can be obtained solely from the
HXR spectrum; the other two parameters nloop and L can only be obtained by adding information
from X-ray imaging. It is therefore instructive to investigate how variations in each of the thermal
parameters change the resulting values of the nonthermal electron parameters, in particular Ec and
P .
In the three sets of panels in Figure ??, we plot the values of Ec and P . The top two panels show

the variations with L for fixed values of Tloop and nloop; the middle panels show the variations with
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Warm-target model and data



How is the energy transferred to electrons?Flare electron transport: turbulence

Turbulent scattering can lead to diffusive transport of electrons and trapping 
e.g. Schlickeiser 1989, Bian et al. 2011, Kontar et al. 2014, Musset et al. 2018.

probing solar flare particle acceleration with X-ray polarization 3

Equation (1) models electron-electron energy losses,
the dominant electron energy loss mechanism in the
flaring plasma, and both electron-electron and electron-
proton interactions for collisional pitch-angle scattering.
Equation (1) can be easily generalized to model any
particle-particle collisions.
Here, we also want to study how non-collisional trans-

port e↵ects such as turbulent scattering change the elec-
tron distribution and the resulting X-ray polarization.
For this we use an isotropic turbulent scattering ap-
proximation1 (e.g. Schlickeiser 1989) where the turbu-
lent scattering di↵usion coe�cient DT

µµ
is related to the

turbulent scattering mean free path �s using

D
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µµ
' v
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1� µ
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�
. (4)

In this simple model, �s is the turbulent scattering
mean free path. It is related to the level of turbulent
magnetic field fluctuations �B/B by

�s ⇠
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2

B2

�◆�1

. (5)

and by changing �s di↵erent levels of turbulence can
be investigated.
In simulations where we investigate the role of non-

collisional turbulent scattering, the governing Fokker-
Planck equation becomes:
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(6)

It is likely that there are other non-collisional ef-
fects which can change the electron properties, such
as beam-driven Langmuir wave turbulence (Hannah
et al. 2009), electron re-acceleration (Brown et al. 2009)
and/or beam-driven return current (Knight & Sturrock
1977; Emslie 1980; Zharkova & Gordovskyy 2006; Alaoui
& Holman 2017), but this is beyond the scope of the pa-
per.
Non-collisional turbulent scattering operates on a

timescale shorter than collisional scattering and can
produce greater isotropy, and hence trapping, amongst
higher energies electrons, than from collisional scatter-
ing. By combining X-ray imaging spectroscopy and

1 We use this model for turbulent scattering since the details of
scattering in the flaring corona are not well-constrained, i.e. there
are many models but few observations.

radio observations of the gyrosynchrotron radiation,
Musset et al. (2018) state that

�s = �s,0[cm]

✓
25[keV]

E

◆
. (7)

Importantly, in this model higher energy electrons have
a smaller turbulent mean free path than lower energy
electrons.
Following Je↵rey et al. (2014), and re-writting Equa-

tion (6) as a Kolmogorov forward equation (Kolmogorov
1931), Equation (6) can be converted to a set of time-
independent stochastic di↵erential equations (SDEs)
(e.g., Gardiner 1986; Strauss & E↵enberger 2017) that
describe the evolution of z, E, and µ in Itô calculus:

zj+1 = zj + µj �s ; (8)
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�s [cm] is the step size along the particle path, and
Wµ, WE are random numbers drawn from Gaussian dis-
tributions with zero mean and a unit variance represent-
ing the corresponding Wiener processes (e.g. Gardiner
1986). A simulation step size of �s = 105 cm is used
in all simulations, and E, µ and z are updated at each
step j. A step size of �s = 105 cm is approximately
two orders of magnitude smaller than the thermal col-
lisional length in a dense (n = 1011 cm�3) plasma with
T � 10 MK (or the collisional length of an electron with
an energy of 1 keV or greater, in a cold plasma). The
derivation of Equation (6) and the detailed description
of the simulations can be found in Je↵rey et al. (2014).
Equation (6) (and Equations (9) and (10)) diverge

as E ! 0, and as discussed in Je↵rey et al. (2014),

the deterministic equation Ej+1 =
h
E

3/2

j
+ 3�m

2
e

2
p
⇡kBT

�s

i

must be used for low energies where Ej  Elow using
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flaring plasma, and both electron-electron and electron-
proton interactions for collisional pitch-angle scattering.
Equation (1) can be easily generalized to model any
particle-particle collisions.
Here, we also want to study how non-collisional trans-

port e↵ects such as turbulent scattering change the elec-
tron distribution and the resulting X-ray polarization.
For this we use an isotropic turbulent scattering ap-
proximation1 (e.g. Schlickeiser 1989) where the turbu-
lent scattering di↵usion coe�cient DT

µµ
is related to the

turbulent scattering mean free path �s and electron ve-
locity v using
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In this simple model, �s is the turbulent scattering
mean free path. It is related to the level of turbulent
magnetic field fluctuations �B/B by
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and by changing �s di↵erent levels of turbulence can
be investigated.
In simulations where we investigate the role of non-

collisional turbulent scattering, the governing Fokker-
Planck equation becomes:
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It is likely that there are other non-collisional ef-
fects which can change the electron properties, such
as beam-driven Langmuir wave turbulence (Hannah
et al. 2009), electron re-acceleration (Brown et al. 2009)
and/or beam-driven return current (Knight & Sturrock
1977; Emslie 1980; Zharkova & Gordovskyy 2006; Alaoui
& Holman 2017), but this is beyond the scope of the pa-
per.
For the majority of coronal flare conditions and elec-

tron energies, non-collisional turbulent scattering can
operates on timescales shorter than collisional scatter-
ing and can produce greater isotropy, and hence trap-
ping, amongst higher energies electrons (see Figure 1,

1
We use this model for turbulent scattering since the details of

scattering in the flaring corona are not well-constrained, i.e. there

are many models but few observations.

right panel). By combining X-ray imaging spectroscopy
and radio observations of the gyrosynchrotron radiation,
Musset et al. (2018) state that
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where �s,0 = 2 ⇥ 108 cm but here we will use 2 ⇥
107 [cm]  �s,0  2 ⇥ 109 [cm]. Importantly, in this
model higher energy electrons have a smaller turbulent
mean free path than lower energy electrons.
Following Je↵rey et al. (2014), and re-writting Equa-

tion (6) as a Kolmogorov forward equation (Kolmogorov
1931), Equation (6) can be converted to a set of time-
independent stochastic di↵erential equations (SDEs)
(e.g., Gardiner 1986; Strauss & E↵enberger 2017) that
describe the evolution of z, E, and µ in Itô calculus:

zj+1 = zj + µj �s ; (8)
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�m2
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�s [cm] is the step size along the particle path, and
Wµ, WE are random numbers drawn from Gaussian dis-
tributions with zero mean and a unit variance represent-
ing the corresponding Wiener processes (e.g. Gardiner
1986). A simulation step size of �s = 105 cm is used
in all simulations, and E, µ and z are updated at each
step j. A step size of �s = 105 cm is approximately
two orders of magnitude smaller than the thermal col-
lisional length in a dense (n = 1011 cm�3) plasma with
T � 10 MK (or the collisional length of an electron with
an energy of 1 keV or greater, in a cold plasma). The
derivation of Equation (6) and the detailed description
of the simulations can be found in Je↵rey et al. (2014).
Equation (6) (and Equations (9) and (10)) diverge

as E ! 0, and as discussed in Je↵rey et al. (2014),

the deterministic equation Ej+1 =
h
E

3/2

j
+ 3�m

2
e

2
p
⇡kBT

�s

i
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Figure 1. Left: Injected electron anisotropy using S(µ) (Equation (11). Small �µ give beamed distributions while large �µ
give isotropic distributions. Right: Turbulent scattering mean free path �s versus electron energy E using Equation (7) and
using �s,0 = 2 ⇥ 107, 2 ⇥ 108 and 2 ⇥ 109 cm. Turbulent scattering quickly isotropises higher energy electrons. The mean free
path �s is also compared with the collisional mean free path (v4/�; grey lines) for three di↵erent densities of 1 ⇥ 1010 cm�3,
1⇥ 1011 cm�3 and 1⇥ 1012 cm�3.

must be used for low energies where Ej  Elow using

Elow =
h

3�m
2
e

2
p
⇡kBT�s

i2/3
– see Je↵rey et al. (2014), follow-

ing Lemons et al. (2009). For such low energy thermal
electrons, µj+1 can be drawn from an isotropic distribu-
tion µ 2 [�1,+1].
Once the electron transport simulations are finished,

we also add an additional background corona thermal
component with temperature T and a chosen EM =
n
2
V that is dominant at lower X-ray energies between

⇡ 1� 25 keV, and where V is the volume of this source.
Although it is possible that the thermal component can
produce a small detectable polarization of a few percent
(Emslie & Brown 1980), we assume that the hot coronal
Maxwellian source is isotropic and hence will produce
completely unpolarized X-ray emission in all the simu-
lations shown here.

2.2. Electron input anisotropy and other injection

properties

The initial electron anisotropy is chosen using

S(µ) / 1

2
exp

✓
� (1� µ)

�µ

◆
+

1

2
exp

✓
� (1 + µ)

�µ

◆
(11)

where dµ controls the electron directivity. As dµ ! 0
the distribution is completely beamed, with half directed
along one loop leg (i.e. µ = �1) and half along the other
(µ = +1), and as dµ ! 1, the electron distribution
becomes isotropic (see the left panel of Figure 1).
For most of the simulations shown here, we input sen-

sible flaring parameters: a simple power distribution in
energy (E��) with spectral index of � = 5, a low en-
ergy cuto↵ of Ec = 20 keV and an acceleration rate of

Ṅ = 7 ⇥ 1035 e s�1 and in space, we input a Gaussian
at the loop apex with a standard deviation 100.

2.3. Creation of the X-ray distribution

Once, the electron flux spectrum is saved, it is con-
verted to a photon flux spectrum using the full angle-
dependent polarization bremsstrahlung cross section as
described in Emslie et al. (2008); Je↵rey & Kontar
(2011) and using the cross-section shown in Gluckstern
& Hull (1953); Haug (1972) given by

�I(E, ✏,⇥) = �?(E, ✏,⇥) + �k(E, ✏,⇥), (12)

�Q(E, ✏,⇥) = (�?(E, ✏,⇥)� �k(E, ✏,⇥)) cos 2⇥, (13)

and

�U (E, ✏,⇥) = (�?(E, ✏,⇥)� �k(E, ✏,⇥)) sin 2⇥, (14)

where �?(E, ✏,⇥) and �k(E, ✏,⇥) are the perpendicular
and parallel components of the bremsstrahlung cross-
section and subscripts I,Q, U denote the cross section
used for the total X-ray flux (I) and linear polarization
components (Q,U) respectively, and

cos⇥ = cos ✓ cos� + sin ✓ sin� cos� (15)

relates ✓ the photon emission angle, � the electron
pitch-angle and � the azimuthal angle measured from
the solar radial direction.
Using the above cross sections the resulting photon

flux I and each specific linear polarization state Q and
U can be written as:

Optically thin lines: 
ion/plasma velocities 
determine width.
The non-thermal 
velocity is attributed to 
plasma turbulence.



How is the energy transferred to electrons?

Turbulence is intimately linked with both acceleration and transport

Stores, 
Jeffrey & 
Kontar (in 
prep)

Flare electron transport: turbulence



How is the energy transferred to electrons?

Before HXR peak

Turbulence is intimately linked with both acceleration and transport

Flare electron transport: turbulence



How is the energy transferred to electrons?

After HXR peak

Turbulence is intimately linked with both acceleration and transport

Flare electron transport: turbulence



Electron anisotropy at the Sun

Isotropic 
electrons

To footpoints

Beamed 
electrons

To footpoints

In the majority of flares, the directivity of flare-
accelerated electrons at the Sun is an unknown.

The electron directivity is a vital diagnostic for 
the method of acceleration, e.g. stochastic 
acceleration methods will produce isotropic 
distributions (e.g. Melrose 1994; Miller et al. 
1996; Petrosian 2012). 


Also vital for constraining coronal plasma 
conditions and transport properties.

It is possible to determine anisotropy from X-
ray linear polarization and X-ray stereoscopic 
observations.

This property cannot be easily obtained from a 
single flare X-ray flux observation (BUT X-ray 
albedo).



Prospective Stereoscopic Missions

STIX (Krucker et al. 2020) onboard 
Solar Orbiter will observe solar flare X-
rays between 4 and 150 keV.

STIX will observe out of the ecliptic up 
to 25o.

STIX will observe as close as 0.28 AU.

At the same time, we will have a new fleet of X-ray missions at LEO/L1:

ASO-S/HXI Aditya-HEL1OS ?

?3-200 keV
Imaging

Chinese mission Indian mission NASA CubeSat
10-150 keV
No imaging

10-100 keV

Launch 2021/2022

Zhang et al. 2019 
Su et al. 2019

Casadei et al. 2017 
Lastufka et al. 2019

Launch in 2021

The first joint observations between STIX and Aditya-HEL1OS will be available 
in the second half of 2021.



X-ray stereoscopic modelling

Identical plasma 
and spectral 
properties 

Viewing angles 
of 20o and 60o.

No albedoWith albedo

Identical high 
energy cutoffs

Different  
anisotropies
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The use of X-ray 
polarization is discussed 

in Jeffrey et al. 2020, 
A&A

Realistic transport modelling will be important for determining the directivity



Summary and Discussion Questions

Understanding and constraining electron transport is crucial for 
constraining the electron acceleration environment and mechanism(s).

Recent advances show the importance of using observationally driven 
models and making diagnostic tools that take into account the realistic 
flaring plasma properties.

Determine 
plasma 

properties

Determine 
transport 
properties

Constrain 
acceleration 
properties

Constrain 
acceleration 
mechanism

Can turbulent acceleration produce electron directivity - what if new 
observations suggest this? No turbulent scattering?

Some question for the discussion session:

How do spatial changes in plasma properties affect our determination of 
flare-accelerated electron properties?


