

Constraining energetic electron transport processes in solar flares

Natasha Jeffrey

SolFER (Particle transport session) May 2021

Energy

release

Solar flare energy partition

• During a flare, magnetic energy is converted into other forms of energy:

A substantial fraction of released energy goes into non-thermal electrons!

Flare-accelerated electron transport

Flare-accelerated electron transport

Electron transport at the Sun

At the Sun, electrons undergo collisional and non-collisional transport processes

O Collisional effects:

Northumbria

University

NEWCASTLE

- cold-target model. e.g. Brown 1971
- warm-target model.

e.g. Jeffrey et al. 2014 Kontar et al. 2015, 2019

O X-ray transport effects:

- Compton scattering in the photosphere (albedo).

e.g. Bai & Ramaty 1978, Jeffrey & Kontar 2011

O Non-collisional effects:

turbulent scattering

e.g. Kontar et al. 2014 Musset et al. 2018

Next talk: L Vlahos

return currents

e.g. Knight & Sturrock 1977, Zharkova & Gordovskyy 2006, Alaoui et al. 2021

Posters today: M. Alaoui, V. Zharkova

Transport and plasma properties

Northumbria

University

NEWCASTLE

O Combined RHESSI X-ray imaging and X-ray spectroscopy suggests the presence of strong vertical temperature, T, and number density, n, gradients in the corona.

Northumbria

University

NEWCASTLE

Flare electron transport: collisions

- In the past, electron transport was described by a cold thick-target model (CTTM) e.g. Brown 1971, Brown & Emslie 1988
- But, we need full collisional modelling: e.g. Jeffrey et al. 2014, Jeffrey et al. 2019

$$\mu \frac{\partial F}{\partial z} = \Gamma m_e^2 \frac{\partial}{\partial E} \left[G(u[E]) \frac{\partial F}{\partial E} + \frac{G(u[E])}{E} \left(\frac{E}{k_B T} - 1 \right) F \right]$$
$$+ \frac{\Gamma m_e^2}{4E^2} \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \left(\operatorname{erf}(u[E]) - G(u[E]) \right) \frac{\partial F}{\partial \mu} \right]$$

"warm-target model"

2nd order effects - energy diffusion/thermalisation. Takes into account the coronal plasma properties.

Flare electron transport: collisions

The determination of electron parameters is sensitive to the coronal parameters

Warm-target model and data

The determination of electron parameters is sensitive to the coronal parameters

• Turbulent scattering can lead to diffusive transport of electrons and trapping e.g. Schlickeiser 1989, Bian et al. 2011, Kontar et al. 2014, Musset et al. 2018.

Northumbria

University

NEWCASTLE

Turbulence is intimately linked with both acceleration and transport

Turbulence is intimately linked with both acceleration and transport

Turbulence is intimately linked with both acceleration and transport

Electron anisotropy at the Sun

In the majority of flares, the directivity of flareaccelerated electrons at the Sun is an unknown.

- This property cannot be easily obtained from a single flare X-ray flux observation (BUT X-ray albedo).
- O The electron directivity is a vital diagnostic for the method of acceleration, e.g. stochastic acceleration methods will produce isotropic distributions (e.g. Melrose 1994; Miller et al. 1996; Petrosian 2012).
- Also vital for constraining coronal plasma conditions and transport properties.
- It is possible to determine anisotropy from Xray linear polarization and X-ray stereoscopic observations.

Prospective Stereoscopic Missions

- STIX (Krucker et al. 2020) onboard
 Solar Orbiter will observe solar flare Xrays between 4 and 150 keV.
- STIX will observe as close as 0.28 AU.
- STIX will observe out of the ecliptic up to 25°.
- At the same time, we will have a new fleet of X-ray missions at LEO/L1:

in the second half of 2021.

X-ray stereoscopic modelling

Realistic transport modelling will be important for determining the directivity HEL10S SO/STIX 0 Identical plasma 2.0 E_{μ} =100 keV, beamed and spectral HXR directivity (SC1 flux / SC2 flux) E_{μ} =100 keV, mildly beamed (d μ =0.1) properties E_{μ} =100 keV, isotropic 1.5 **Identical high** 0 energy cutoffs 1.0 Different 0 anisotropies SC2 SC1 0.5 Viewing angles of 20° and 60°. 0.0 The use of X-ray 10 100 polarization is discussed Energy [keV] in Jeffrey et al. 2020,

With albedo

No albedo

A&A

- Understanding and constraining electron transport is crucial for constraining the electron acceleration environment and mechanism(s).
- Recent advances show the importance of using observationally driven models and making diagnostic tools that take into account the realistic flaring plasma properties.

Some question for the discussion session:

- Can turbulent acceleration produce electron directivity what if new observations suggest this? No turbulent scattering?
- O How do spatial changes in plasma properties affect our determination of flare-accelerated electron properties?