Modeling Large-scale Electron Acceleration and Transport Associated with Magnetic Reconnection

Xiaocan Li1, Fan Guo2, Bin Chen3, Chengcai Shen4, Lindsay Glesener5

1Dartmouth College 2LANL 3NJIT 4CfA 4University of Minnesota

SolFER Spring 2021 Meeting
Outline

1. Introduction to the macroscopic energetic-particle model
2. Two applications
3. Conclusions
Rich observations of flare-accelerated electrons and associated emissions

- EOVSA, RHESSI, Solar Orbiter/STIX, PSP, and many others
- Accurate flare geometry, magnetic profile, nonthermal emissions, and nonthermal electron distributions.
Challenges and opportunities for modeling

The scale separation is enormous in solar flares.
- Acceleration and transport occur at global scales.
- A large number of particles are accelerated.
- The flare geometry and dynamics are complex.
- Kinetic physics is essential for electron scattering and transport.
- Reconnection is complicated, especially in 3D.
A framework to bridge simulations and observations (modeling-centric)

- **MHD simulations**
 - Flare geometry
 - B-field
 - Plasma flows

- **Transport theories**
 - Acceleration terms
 - Diffusion coefficients

- **Kinetic simulations**
 - Acceleration mechanisms
 - Turbulence properties
 - Scattering mechanisms

- **Macroscopic energetic-particle model**
 - Spatially and temporally dependent energetic particle distributions

- **Emission observations**
 - HXR and microwave emissions

- **Emission modeling**
 - HXR and microwave emission maps for different perspectives

- **In-situ observations**
 - Solar energetic particle events
MHD simulations provide plasma flows and B-field.

- The model-generated nonthermal electron distributions will be compared with those derived from nonthermal emissions.
The macroscopic model

\[
\frac{\partial f}{\partial t} = - (U_i + V_{d,i}) \frac{\partial f}{\partial x_i} + \frac{\partial}{\partial x_i} \left[\kappa_{ij} \frac{\partial f}{\partial x_j} \right] + \frac{p}{3} \frac{\partial U_i}{\partial x_i} \frac{\partial f}{\partial p} + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right) + Q + \ldots
\]

- Assumptions (supported by kinetic simulations)
 - \(f \) is nearly isotropic due to pitch-angle scattering by reconnection-driven turbulence (e.g., Dahlin et al. 17, Li et al. 19)
 - 1st-order acceleration due to flow compression \(\leftrightarrow \) acceleration associated with drift motions (e.g., le Roux et al. 15, Li et al. 18).
- \(\kappa_{ij} \) and \(D_{pp} \) are calculated using quasi-linear theory for now.
Application 1: a local reconnection layer

- The electron spectra are similar to k_{global} model with feedback (Arnold et al. 21, PRL).

Spatially and temporally dependent maps of energetic electrons (Li et al. 18).
The spectra are roughly consistent with the observations.
Application 2: case 1 (maps of energetic electrons)

- High-energy electrons can fill the flare reconnection region.
- High-energy electron flux peaks at the looptop region.
Application 2: case 2 (with plasmoid)

- The spectra are also consistent with the observations.
Application 2: case 2 (maps of energetic electrons)

- High-energy electron flux peaks when two islands merge.
Conclusions

• We solved a macroscopic model with background MHD simulations of solar flares. We showed that electrons are accelerated to hundreds of keV and develop nonthermal power-law distributions, both of which are consistent with the observations.

• Reconnection exhaust, magnetic islands, and flare looptop regions are all possible electron acceleration sites. The island mergers are highly efficient in accelerating electrons due to strong compression.

• To explain some of the observations, additional acceleration mechanisms (stochastic acceleration and termination shocks) might be required.