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Rich observations of flare-accelerated electrons and
associated emissions

Chen et al. 20, Nature Astronomy

• EOVSA, RHESSI, Solar Orbiter/STIX, PSP,
andmany others

• Accurate flare geometry, magnetic profile,
nonthermal emissions, and nonthermal
electron distributions.

Chen et al. 21
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Challenges and opportunties for modeling
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• The scale separation is enormous in solar flares.
◦ Acceleration and transport occur at global scales.
◦ A large number of particles are accelerated.
◦ The flare geometry and dynamics are complex.
◦ Kinetic physics is essential for electron scattering and transport.
◦ Reconnection is complicated, especially in 3D.
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A framework to bridge simulations and observations
(modeling-centric)
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Rest of this talk
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• MHD simulations provide plasma flows and B-field.
• Themodel-generated nonthermal electron distributions will
be compared with those derived from nonthermal emissions.
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Themacroscopic model
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• Assumptions (supported by kinetic simulations)
◦ f is nearly isotropic due to pitch-angle scattering by

reconnection-driven turbulence (e.g., Dahlin et al. 17, Li et al. 19)

◦ 1st-order acceleration due to flow compression ⇔ acceleration
associated with drift motions (e.g., le Roux et al. 15, Li et al. 18).

• κij and Dpp are calculated using quasi-linear theory for now.
• Solved using stochastic integration: https://git.io/fxQY1.

7 / 13

https://git.io/fxQY1


Application 1: a local reconnection layer
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• The electron spectra are
similar to kglobal model
with feedback (Arnold et al. 21, PRL).

Spatially and temporally
dependent maps of energetic

electrons (Li et al. 18).
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Application 2: Sep. 10th 2017 flare (early impulsive
phase), case 1 (no plasmoid)

60 70 80 90

x (Mm)

0

10

20

30

40

50

60

70

y
(M

m
)

Vy/VA0

−1.0

−0.5

0.0

0.5

1.0

101 102 103

ε/keV

10−5

10−3

10−1

101

103

105

f(
ε)

δ′1 = 3.6

δ′2 = 25

δ′2 = 5.8

t = 228.3 s

• The spectra are roughly consistent with the observations.
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Application 2: case 1 (maps of energetic electrons)

• High-energy elections can fill the flare reconnection region.
• High-energy electron flux peaks at the looptop region.
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Application 2: case 2 (with plasmoid)
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• The spectra are also consistent with the observations.
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Application 2: case 2 (maps of energetic electrons)

• High-energy electron flux peaks when two islands merge.
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Conclusions

• We solved amacroscopic model with background MHD
simulations of solar flares. We showed that electrons are
accelerated to hundreds of keV and develop nonthermal
power-law distributions, both of which are consistent with
the observations.

• Reconnection exhaust, magnetic islands, and flare looptop
regions are all possible electron acceleration sites. The island
mergers are highly efficient in accelerating electrons due to
strong compression.

• To explain some of the observations, additional acceleration
mechanisms (stochastic acceleration and termination shocks)
might be required.
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