
Sca$ering and transport of energe1c electrons in 
solar flares

Whistler wave basics

Overview

The role of whistler waves in sca1ering energe3c electrons as they undergo accelera3on during 
magne3c energy release in solar flares is explored with par3cle-in-cell (PIC) simula3ons and in 
the development of a transport model. Energe3c electrons accelerated in flares reach 
rela3vis3c veloci3es. The transit 3me of these energe3c electrons across the energy release 
region in flares (< 0.1s) is much shorter than the energy gain 3me of these electrons (~10s). This 
disparity in 3me scales is associated with the fact that the Alfvén speed in the corona is much 
smaller than the velocity of light. Strong pitch-angle sca1ering can poten3ally lead to self-
confinement of energe3c electrons undergoing accelera3on.

Whistler heat flux instability

Transport equations for energetic electrons 
in flares – Basic assumptions

Overview of transport equations

Flare observations related to transport

Challenges with modeling 
electron scattering in flares 
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• The decay 3me of hard X-ray emission from flares 
exceeds the transit 3me of energe3c electrons 
across the source by two orders of magnitude 
(Masuda et al. 1994; Krucker et al. 2007, 2010). 

• RHESSI spacecraX observa3ons suggest that the 
electron energy flux in the source regions of flares 
can exceed that measured at the chromosphere by 
up to an order of magnitude (Simões et al. 2013). 

• EOVSA observa3ons suggest that non-thermal 
electrons accelerate and self-confine in localized 
regions in the corona (Fleishman et al. 2021)

• Whistlers are dispersive waves that rotate in the
electron direc3on around the ambient magne3c field

• Phase speed peaks around the electron Alfven speed
VAe for kde ~ 1 with de the electron skin depth.

• Oblique propagation introduces resonances at
multiple harmonics of the electron cyclotron
frequency

• For large amplitude waves the resonances
overlap, causing electron pitch angle scattering

• The sca'ering mean-free-path of electrons by
whistlers is short compared with gradient scale
lengths of energe7c electrons
⇒ Pitch angle anisotropy of electrons is weak

• Describe whistler sca'ering by a pitch angle
sca'ering operator in the whistler wave frame
• Assume that the whistlers can sca'er electrons

over the full range of pitch angles
⇒ To be tested with PIC simula7ons

• The whistler phase speed VAe is small compared with
the characteris7c velocity V0 of energe7c electrons
⇒ enables an order-by-order expansion of the
electron distribu7on func7on

• Whistlers sca1er electrons in pitch angle in the 
whistler wave frame
• The electron energy in the plasma  frame is 

reduced, driving whistlers unstable
• PIC simula3on with an anisotropic κ distribu3on 

drives oblique  whistlers 
• Relevant for energe3c electrons – powerlaw

distribu3on
• Energe3c electrons also sca1ered through the 

n=1,0,-1,-2,-3, … resonances 

• PIC simula7ons on energe7c electron sca'ering
to date have been based on transient systems
with specified ini7al 𝜅 distribu7ons
• Solu7on – carry out simula7ons with

energe7c electrons injected from boundaries
and run to steady state (Roberg-Clark+ 2018)

• PIC simula3ons are limited to unrealis3cally small
systems with the result that the energy fluxes of the
energe3c electrons that drive whistlers are too large
and produce unrealis3cally strong whistlers
• Solu3on – develop a set of transport equa3ons that

parallel those used in describing cosmic ray
transport (Kulsrud & Pearce 1969, Zweibel 2013)

• A complete set of coupled transport for energe3c
electrons limited by self-driven whistler waves has
been developed.
• Whistlers are driven unstable by the energy flux

of energe3c electrons
• The sca1ering rate 𝜈w of electrons is calculated

self-consistently by balancing whistler drive with
collisionless damping.

• The resul3ng electron mean-free-path L0 is short
compared with the gradient scale length L of the
energe3c electrons

with V0 the characteris3c velocity of energe3c
electrons associated with their energy W=mV02/2

• Because of the short mean-free-path, electrons
remain nearly omni-direc3onal
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has its color scale capped at 0.15 to bring out
the whistler signal).
Figures 4a-c illustrate the scattering of the

electron distribution function as time proceeds
in the simulation. The color plot shows the con-
tours of constant f(vx, vy). At t = 0 (Fig. 4a)
the large discontinuity in f at t = 0 separates
the return current beam with vx < 0 and the
 distribution with vx > 0. At t⌦e0 = 177
(Fig. 4b) the distribution develops horn-like
structures near vx/VAe0 ' �1, 1.8, 3, and 3.5
that demonstrate that particles from the initial
distribution near the vy=0 axis have been scat-
tered to higher vy and lower vx. The largest
number of scattered particles is in the struc-
ture at vx/VAe0 = 1.8. The discontinuity in
Fig. 4a has been filled in and the contours
of the distribution are fairly flat in the vicin-
ity of the whistler phase speed vp,x/VAe0 ⇠ 0.5.
We attribute the flattening to large-amplitude
electrostatic fluctuations that quickly grow up
and damp in the simulation (not shown). When
t⌦e0 = 355 (4c), the distribution is significantly
more isotropic in the vx > 0 half-plane. While
some particles have been scattered to vx < 0,
most of the scattering seems to be limited to
vx > 0, suggesting that hv2yi saturates in Fig. 1a
because the vx > 0 half-plane has become nearly
isotropic. Figure 4c is therefore representative
of the late-time structure of the distribution
function.

4. RESONANCES

To explain scattering in the simulation we in-
voke the basic theory of resonant interaction
between oblique whistlers and electrons (see
e.g. Roberg-Clark et al. (2016) and references
therein). We write the resonance condition as

! � kxvx,r �
n⌦e0

�
= 0 (5)

where n = 0,±1,±2, ..., vx,r is the parallel res-
onant velocity, and � = (1� v2r/c

2)�1/2 with vr
the total electron velocity. We first discuss the
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Figure 4. Electron distribution functions in the
vx � vy phase space at di↵erent times, shown both
in color and with contours. (a) The imposed distri-
bution at t = 0 with a return current Maxwellian
for vx < 0 and energetic, anisotropic bi- for
vx > 0. (b) At t⌦e0 = 177 horn-like figures have
emerged as a result of scattering. Intersections of
the resonant surfaces n = 1, 0,�1,�2,�3,�4,�5
with the vx = 0 axis (white crosses, equation
8) are shown with the constant-energy surfaces
�0 = 1.035, 1.125, 1.25, 1.45, 1.6, and 1.8 (solid
black lines, equation 9). (c) At t⌦e0 = 355, the
n = �1 through n = 5 resonances for the left-
ward wave are shown along with the energy surfaces
�0 = 1.3 and 1.9.
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