ZH, H $\rightarrow \gamma \gamma_{\text{D}}$ analysis

24 February 2021

Federica Piazza - 2nd year PhD student Università degli studi e INFN, Milano

My PhD activities Physics Analysis

- Focus on Dark-Matter related analyses:
 - Mono-photon analysis in the context of Exotics, JDM subgroup (master thesis + 1st PhD year)
 - y+MET final state
 - Paper accepted by JHEP (<u>arxiv</u>)

- Dark-photon analysis in the context of HDBS, HLRS subgroup (joined the analysis team in july 2020)
 - Z(II)H-> yyD
 - New analysis in ATLAS (CMS <u>results</u> already published)

My PhD activities Performance

 Performance studies in the context of JetETmiss, MET+PU subgroup: implementation and preliminary validation and performance studies for a MET reconstruction based on Global Particle Flow objects (QT project. End date: 16/12/20)

> charged particle flow objects (cPFOs)

> > original tracks

- Two main tasks:
 - Association Map based on direct links between PFOs and leptons/photons
 - 2. Building Jet Term from PFOs not associated to other selected objects in MET

Current PFlow MET

- **PFO association** to $e/\mu/\gamma$ through ΔR or clusters/tracks matching
- JetTerm from standard jet collection
 + overlap removal with other objects

GPF MET

Direct

links

GSF tracks

• **PFO association** to $e/\mu/\gamma$ using direct links

electron

Direct

links

supercluster

• JetTerm from new "Overlap Removed (OR)" jet collection. No need for overlap removal

- Future plans:
 - Finalize integration of links between FlowElement and egamma/tau/muons in Association Maps
 - Finalize OR MET reconstruction (handling jet-muon overlap)
 - Large scale validation

neutral particle flow objects (nPFOs)

> existing link added link

topoclusters

Dark-photon analysis

- Glance entry: <u>ANA-HDBS-2019-13</u>
- Twiki page: link
- Analysis team
 - BNL: Ketevi Assamagan
 - **Milano**: Leonardo Carminati, Marcello Fanti, Davide Mungo, Federica Piazza, Silvia Resconi + 3 bachelor students (Dario Pullia, Denise Tantucci, Andrea Mitta)
 - Nikhef: Stefano Manzoni
 - Osaka: Hajime Nanjo
 - Rabat: Hassnae El Jarrari, Yahya Tayalati
 - Standford: Stanislava Sevova, Lauren Tompkins, Rocky Garg + 2 Summer Students: Blanca Nino, Elyssa Hofgard
 - Taipei AS: Rachid Mazini

Motivation

- Dark-photon is predicted as a massless (or light) gauge boson of a new unbroken U(1) group
 - Mediator of long range forces in the dark-sector, but also possible DM candidate
 - Can help explaining
 - small-scale structure formation
 - light-DM annihilation in asymmetric DM scenarios
 - Flavor hierarchy problem
- Why massless or light?
 - Given the unbroken U(1) symmetry, massive dark-photon leads to tree-level mixing with SM photons => strong constraints
 - Massless dark-photon => on-shell dark photons fully decoupled from the SM sector at tree level. Coupling with SM sector through higher-dimensional interactions via messenger exchange

Phenomenology

- Dark-photon from Higgs decay:
 - One loop decay
 - BSM BR up to 5% allowed by present constraints (Biswas, Gabrielli, Heikinheimo, Mele (2016))
- Different production modes can be explored:
 - VBF (analysis ongoing in ATLAS) link
 - ggH: potentially high sensitivity, but missing viable triggers for Run-2 (mT distribution spoilt)
 - ZH (this analysis)

Biswas, Gabrielli, Heikinheimo, Mele (2014)

ZH, H->yyD

- Lower production cross-section
- But clean final state:

two leptons from Z decay + one photon + E_T^{miss}

- VV+y only irreducible bkg (subdominant)
- Dominant background contributions from Zy+jets and Zjets processes (fake E^{miss}_T)

MC samples and Ntuple production

- MC samples (HIGG2D1 derivations)
 - Mainly Sherpa NLO
 - Powheg+Pythia8 for single top, Vt, VtII, ttbar, Higgs related processes, signal
 - MadGraph+Pythia8 for ttV
 - Using $H \rightarrow \gamma Gr$ for the signal
 - Graviton behaves like dark-photon
 - $m_{Gr} = 0, 1, 10, 20, 30, 40 \text{ GeV}$

• Framework:

- "mini-Ntuple" production using <u>STAnalysisCode framework</u> (based on SUSYTools)
- "Micro-Ntuple" production and post processing (plots, cutflows, ...) using <u>STPostProcessing framework</u>
- Release 21.2.151

Event selection

Preselections

- GRL, Detector event cleaning, PV selection, Loose Jet Cleaning (MiniNtuple skim)
- At least one baseline electron or muon (MiniNtuple skim)
- Overlap removal between Vy and Vjets MC
- Trigger (single/double lepton)

SR selections (optimization studies by E. Hofgard presented during <u>last update</u>)

- 2 opposite sign muons/electrons with p_{τ}^{lep1} > 26 GeV and p_{τ}^{lep2} > 10 GeV
- 1 photon with $p_T^{\gamma} > 25 \text{ GeV}$
- Njet<=2 and Nbjet=0
- $76 < m_{\parallel} < 116 \text{ GeV}$
- m_{lly} > 100 GeV
- MET > 60 GeV

Background composition in SR

Background processes

- **Zgam**: Zy+jets => fake MET (fakeMET ABCD method)
- **Zqcd**: Z+jets => fake MET + jet faking photon (j->y ABCD method)
- Top: single Top + ttbar + VtII + ttV + ttbarVV => non resonant background
- VV: ggVV, VV ewk => jet faking photons (j->y ABCD) and electron faking photon (e->y fake rate from Zee)
- VVV (VVy) => irreducible background (subdominant)
- **HZy**: ttHZy + VHZy + VBFZy + ggHZy (low contribution)

mc16a ee channel $\mu\mu$ channel	HyGr 5.19 +/- 0.12 6.49 +/- 0.14	Zgam 89 +/- 13 176 +/- 21	Zqcd Top 56 +/- 19 36.1 153 +/- 35 38.4	VV 1 +/- 1.6 9.77 + 4 +/- 1.7 9.51 +	/- 0.53 /- 0.60	VVV 6.29 +/- 0.37 7.07 +/- 0.43	Wgam 1.91 +/- 0.96 0.40 +/- 0.29	HZy 0.0689 +/- 0.0019 0.0885 +/- 0.0022	bkgs 198 +/- 23 385 +/- 41
mc16d ee channel μμ channel	HyGr 5.86 +/- 0.13 7.25 +/- 0.14	Zgam 95 +/- 12 256 +/- 21	Zqcd Top 56 +/- 29 35.6 216 +/- 47 37.3	VV 6 +/- 1.6 10.32 + 3 +/- 1.6 11.46 +	·/- 0.44 ·/- 0.47	VVV 6.49 +/- 0.41 6.88 +/- 0.39	Wgam 4.5 +/- 2.4 0.70 +/- 0.41	HZy 0.0762 +/- 0.0020 0.1007 +/- 0.0024	bkgs 209 +/- 31 528 +/- 51
mc16e ee channel μμ channel	HyGr 8.12 +/- 0.15 9.47 +/- 0.17	Zgam 134 +/- 13 318 +/- 20	Zqcd To 260 +/- 53 47 200 +/- 55 55	op VV 7.9 +/- 1.8 15.62 5.1 +/- 2.0 14.42	+/- 0.68 +/- 0.65	VVV 9.04 +/- 0.48 9.76 +/- 0.46	Wgam 4.4 +/- 1.5 -1.7 +/- 1.8	HZy 0.0943 +/- 0.0023 0.1275 +/- 0.0027	bkgs 471 +/- 55 596 +/- 58

(Plots by H. El Jarrari)

Distributions in SR: ee-channel

(Plots by H. El Jarrari)

Distributions in SR: uu-channel

Data/MC in blinded SR: ee-channel

Blinding

 $m_T < 65 \text{ GeV} \parallel m_T > 145 \text{ GeV} => about 82\% signal rejected}$

Data/MC in blinded SR: uu-channel

Blinding

 $m_T < 65 \text{ GeV} \parallel m_T > 145 \text{ GeV} => about 82\% signal rejected}$

BDT > 0.85

SR optimization with Machine Learning Impact of BDT cut in SR

- Input variables: met_tight_tst_et, met_tight_tst_phi, mT, ph_pt, dphi_mety_II, AbsPt, PtII, mllg, lep1pt, lep2pt, mll, metsig_tst, PtIlg,dphi_met_ph
- Hyperparameter tuning performed with <u>hpogrid</u>

Optimisation of cut on BDT weight based on AMS metric: $\sqrt{2[(s + b)ln(1 + s/b) - s]}$

SR optimization

40 60 80 100 120 140 160 180 200 220

 $m_{T}(E_{T}^{miss}, \gamma p_{-})$ [GeV]

S/VB

S/VB

 $m_{\rm T}(E_{\rm T}^{\rm miss},\gamma p_{\rm T})$ [GeV]

20 40 60 80 100 120 140 160 180 200 220

Electrons-faking-photons

- Mainly W(ev)Z(II) events with the electron from W decay misidentified as a photon
- Using e-to- γ fake rate from mono-photon analysis
- Data yields in the WZ CR (defined as the SR, but requiring an electron in place of the signal photon) rescaled by fake-rate
- Similar procedure will be applied to all the analysis CRs
- Will be bachelor thesis project of Andrea Mitta

Preliminary results (B. Nino, S.Sevova), using previous version of the ntuples (AthAnalysis 21.2.123)

Mono-photon analysis

Data/MC in VR

Jets-faking-photons

- Mainly from Z+jets events, with one jet misidentified as a photon
- ABDC method, based on photon isolation and identification
- Number of jets-faking-photons: $N_{j \rightarrow \gamma} = (1 P)N_A$ with $P = N_A^{sig}/N_A$ $N_A^{sig} = N_A - R_{MC} \frac{(N_B - c_1 N_A^{sig})(M_A - c_2 N_A^{sig})}{M_B - c_3 N_A^{sig}}$
- The c_i and R_{MC} coefficients are evaluated from MC, and allow to take into account deviations from the basic assumptions of the method (uncorrelated variables and negligible signal leakage in the B,C and D regions)
 - $c_i = N_i/N_A$: signal (real-photon) leakage in the i-th CR, estimated from Zy+jets MC
 - $R_{MC} = (N_A M_B)/(N_B M_A)$: correlation factor between tight and isolated regions, estimated from Z+jets MC
- Study ongoing

Fake MET background A new ABCD method

- Defining an ABCD method
 - Different pair of variables and cut values tested
 - MET significance or MET as a first variable (MET significance variable allows good discrimination between fake MET and real MET)
 - Several second variables considered. Most promising from preliminary studies:

$$\begin{split} &\Delta\phi(\mathbf{E}_{T}^{\text{miss}}, \mathbf{p}_{T}^{\text{ll}\gamma}) \\ &\Delta\phi(\mathbf{E}_{T}^{\text{miss}} + \mathbf{p}_{T}^{\gamma}, \mathbf{p}_{T}^{\text{ll}}) \\ &\Delta\phi(|\mathbf{E}_{T}^{\text{miss}} + \mathbf{p}_{T}^{\text{ll}\gamma}, \text{nearest}(\mathbf{E}_{T}^{\text{miss}}, \mathbf{p}_{T}^{\text{ll}\gamma})) \\ &\Delta\phi(\mathbf{E}_{T}^{\text{miss}}, \text{nearest obj.}) \\ &|\mathbf{E}_{T}^{\text{miss}}/\mathbf{p}_{T}^{\text{ll}\gamma}| \\ &|\mathbf{E}_{T}^{\text{miss}} + \mathbf{p}_{T}^{\text{ll}\gamma}|/\mathbf{E}_{T}^{\text{miss}} \end{split}$$

var1=MET or METsig

- Further investigation based on the following criteria:
 - R stability: non dependence of R coefficient on _____ the choice of cut values
 - R close to 1 (uncorrelated variables)
 - High signal efficiency in SR and low leakage of dark-photon and real MET events in the CRs
 - Good statistics in CRs

17

(Due to mismeasured jets in Zy+jets process)

Fake MET background Choice of variables

Stability tested scanning different cut values on var1 and var2, with both MET and MET significance as var1

var1	var2	mean	ee	uu
<pre>met_tight_tst_et metsig_tst metsig_tst metsig_tst metsig_tst metsig_tst metsig_tst met_tight_tst_et met_tight_tst_et met_tight_tst_et met_tight_tst_et met_tight_tst_et</pre>	<pre>dphi_met_lly dphi_met_nolly met_over_ptlly dphi_min mlly dphi_met_lly dphi_mety_ll dphi_min dphi_mety_ll dphi_met_nolly met_over_ptlly</pre>	0.62 0.66 0.71 0.83 0.88 0.94 1.07 1.14 1.25 2.36 2.44	0.49 0.76 0.50 0.61 0.73 1.12 1.02 1.36 0.49 3.30 3.25	0.76 0.56 0.93 1.06 1.04 0.76 1.12 0.92 2.01 1.43 1.64

chi2 in ee-channel, uu-channel and the mean of the two reported in columns ee, uu, and mean respectively

dphi_met_lly dphi_mety_ll dphi_met_nolly dphi_min met_over_ptlly met_nolly

$$\begin{split} & \Delta \phi(\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}}, \mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma}) \\ & \Delta \phi(\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}} + \mathbf{p}_{\mathsf{T}}^{\gamma}, \mathbf{p}_{\mathsf{T}}^{\mathsf{ll}}) \\ & \Delta \phi(|\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}} + \mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma}|, \mathsf{nearest}(\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}}, \mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma})) \\ & \Delta \phi(\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}}, \mathsf{nearest obj.}) \\ & |\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}} / \mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma}| \\ & |\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}} + \mathbf{p}_{\mathsf{T}}^{\mathsf{ll}\gamma}| / |\mathbf{E}_{\mathsf{T}}^{\mathsf{miss}} \end{split}$$

Fake MET background Variable distributions for METsig-based ABCD

Fake MET background Variable distributions for MET-based ABCD

Fake MET background Including METsig cut in MET-based ABCD

- MET significance cut improves sensititity thanks to high discrimination between real MET and fake MET
- Trying to include a MET significance cut in high MET regions, in the MET-based ABCD

 var1	var2	metsig	mean	ee	uu
<pre>met_tight_tst_et met_tight_tst_et</pre>	dphi_met_lly dphi_met_lly	0.0 3.0	0.62 0.92	0.49 0.70	0.76 1.13
<pre>met_tight_tst_et</pre>	dphi_met_lly	4.0	1.78	1.22	2.33

Fake MET background Best cut values

Considering best MET-based and best METsig-based ABCD

	ee-	cha	nnel	var1	var2		metsig	cut1	cut2	R	
				met_tight_ts metsig_tst metsig_tst	t_et dphi_ dphi_ dphi_	_met_lly _min _min	3.0 3.0 4.0	4000 3.0 4.0	0.0 2.0 0.2 0.2	1.28 +\- 0. 1.02 +\- 0. 1.26 +\- 0.	25 27 35
	uu-	-cha	nnel	 var1	var2		metsig	cut1	cut2	R	
				<pre>met_tight_ts</pre>	t_et dphi	_met_lly	3.0	40000	.0 2.0	1.23 +\- 0.	17
			metsig_tst metsig_tst	dphi dphi	_min _min	3.0 4.0	3.0 4.0	0.2 0.2	0.92 +\- 0. 0.96 +\- 0.	19 20	
<u>//ETsig-dphi_min</u>			in	ee-c	hannel		uu-channel				
sample	V1	V2	nA	nB	nC	nD	nA		nB	nC	nD
hyGr zgam zqcd realMET	4 4 4 4	0.2 0.2 0.2 0.2	318.4+/-4.3 83.8+/-11.3 202.3+/-49.1 127.7+/-2.7	26.9+/-1.2 158.3+/-15.8 161.7+/-39.5 18.0+/-1.0	32.0+/-1.4 23.9+/-4.2 2.1+/-5.4 22.2+/-1.1	6.2+/-0.6 56.8+/-7.9 5.4+/-5.6 6.0+/-0.6	389.5+/-4.8 31. 237.7+/-21.2 295 269.5+/-53.0 145 136.7+/-2.8 19.		31.2+/-1.3 295.0+/-21.6 145.1+/-46.9 19.3+/-1.0	35.2+/-1.4 99.3+/-14.4 76.5+/-27.6 22.9+/-1.1	8.3+/-0.7 118.6+/-12.4 77.9+/-25.8 7.4+/-0.7
MET-dp	ohi m	net	lly	ee-c	hannel				uu-c	hannel	
sample	V1	V2	nA	nB	nC	nD	nA		nB	nC	nD
hyGr zgam zqcd realMET	40 40 40 40	2 2 2 2 2	342.2+/-4.4 91.1+/-11.8 216.5+/-50.1 123.9+/-2.6	4 69.9+/-2.0 25.6+/-1. 8 1955.2+/-56.0 44.1+/-6. .1 739.3+/-97.0 27.0+/-14 6 44.5+/-1.3 36.1+/-1.		10.5+/-0.8 1212.1+/-45.2 199.3+/-41.8 19.2+/-1.0	415.1+/-4.980.274.7+/-20.5240335.1+/-59.0107131.7+/-2.849.		80.6+/-2.2 2407.9+/-64.5 1079.1+/-113.2 49.6+/-1.4	29.6+/-1.3 161.7+/-18.5 32.7+/-15.1 39.3+/-1.5	13.7+/-0.9 1741.0+/-49.9 156.4+/-50.3 19.3+/-1.0

Fake MET background ABCD regions definition

- Add a gap region for 40 < MET < 60 GeV (reduce signal leakage in B and D regions, leaves room for VR)
- MET cut: 40 GeV
- dphi(MET, Ily) cut: 2
- MET significance > 3 in high MET regions

R= 1.28 +\- 0.25 in ee channel R= 1.23 +\- 0.17 in uu channel

<u>ee chan</u>	nel										
Sample	nA	nB	nC	nD							
hyGr	17.11+/-0.22	3.49+/-0.10	1.28+/-0.06	0.52+/-0.04							
zgam	91.1+/-11.8	1955.2+/-56.1	44.1+/-6.4	1212.1+/-45.2							
zqcd realMET	216.5+/-50.1 123.9+/-2.6	739.3+/-97.0 44.5+/-1.3	27.0+/-14.7 36.1+/-1.5	199.3+/-41.8 19.2+/-1.0							
μμ cha	μμ channel										
Sample	nA	nB	nC	nD							
hyGr	20.76+/-0.25	4.03+/-0.11	1.48+/-0.07	0.68+/-0.04							
zgam	274.7+/-20.5	2407.9+/-64.5	161.7+/-18.6	1741.0+/-49.9							
zqcd realMET	335.1+/-59.0 131.7+/-2.8	1079.1+/-113.2 49.6+/-1.5	32.7+/-15.1 39.3+/-1.5	156.4+/-50.3 19.3+/-1.0							

Fake MET background Preliminary validation: data/MC in low MET region

Sample	nA	nB	nC	nD
hyGr	7.6+/-0.1	3.5+/-0.1	0.7+/-0.0	0.5+/-0.0
zgam	555.3+/-33.0	1954.8+/-56.0	226.1+/-18.8	1211.7+/-45.2
zqcd	564.2+/-85.5	739.3+/-97.0	46.3+/-25.0	199.3+/-41.8
totalMC	1191.6+/-91.7	2739.1+/-112.1	292.6+/-31.4	1430.6+/-61.5
totalDat≀	1474.0+/-38.4	3620.0+/-60.2	308.0+/-17.5	1513.0+/-38.9

Good data/MC agreement in low MET regions (MET < 60)</p>

30 < MET < 40 GeV

Fake MET background Preliminary validation: data/MC in low MET region

Sample	nA	nB	nC	nD
hyGr	9.1+/-0.2	4.0+/-0.1	0.9+/-0.1	0.7+/-0.0
zgam	783.8+/-34.7	2407.6+/-64.5	484.6+/-29.9	1740.8+/-49.9
zqcd	798.7+/-105.2	1079.1+/-113.2	101.8+/-32.4	156.4+/-50.3
totalMC	1650.5+/-110.8	3536.7+/-130.3	605.3+/-44.1	1916.7+/-70.9
totalDat≀	1986.0+/-44.6	4236.0+/-65.1	749.0+/-27.4	1979.0+/-44.5

Good data/MC agreement in low MET regions (MET < 60)</p>

30 < MET < 40 GeV

Fake MET background Preliminary validation: results in VR

- All regions dominated by Zy+jets and Z+jets background
- In situ estimates for other backgrounds still not available. Preliminary tests with temporary solutions

=> Rzyzjet: evaluating R from Zy+jets AND Z+jets (both are characterized by sizeable fake MET)

=> Rzy : R from Zy only

For background not used in R estimation, MC yields in each region subtracted from data

$\mu\mu$ channel

	Rmc	Rdata	MC	Data	ABCD
Rzyzjet Rzy	1.468 +-0.170 1.169 +-0.100	1.230 +-0.113 1.034 +-0.170	1582 +- 111 784 +- 35	1918 +- 66 1120 +- 124	2291 +- 329 1266 +- 188

ee channel

	Rmc	Rdata	MC	Data	ABCD
Rzyzjet	2.153 +-0.330	2.035 +-0.269	1120 +- 92	1402 +- 60	1483 +- 293
Rzy	1.523 +-0.172	1.583 +-0.356	555 +- 33	838 +- 105	806 +- 176

=> R from data is consistent with R from MC => ABCD estimates consistent with observed data

Fake MET background TRooABCD, ee channel

mT distribution in region A' from simultaneous fit on the B,C,D regions with TRooABCD

- mT histograms in each B,C,D region as input
- Using data in VR, and subtracting
 Zjets from MC (first approximation)
- Correct for R=(nA nD)/(nC nB) by scaling the histogram in region D by 1/R (with R estimated from Zy+jet MC)

 $nA(x) = (m_0+m_1(x)) \times nB(x)$ $nC(x) = (m_0+m_1(x)) \times nD(x)$

(x labels the bin)

Rzy, subtracted Zjet

Fake MET background TRooABCD, ee channel

mT distribution in region A' from simultaneous fit on the B,C,D regions with TRooABCD

- mT histograms in each B,C,D region as input
- Using data in VR
- Correct for R=(nA nD)/(nC nB) by scaling the histogram in region D by 1/R (with R estimated from Zy+jet and Zjet MC)

Only statistical uncertainties

Fake MET background TRooABCD, uu channel

mT distribution in region A' from simultaneous fit on the B,C,D regions with TRooABCD

- mT histograms in each B,C,D region as input
- Using data in VR, and subtracting
 Zjets from MC (first approximation)
- Correct for R=(nA nD)/(nC nB) by scaling the histogram in region D by 1/R (with R estimated from Zy+jet MC)

Rzy, subtracted Zjet

Only statistical uncertainties

Fake MET background TRooABCD, uu channel

mT distribution in region A' from simultaneous fit on the B,C,D regions with TRooABCD

- mT histograms in each B,C,D region as input
- Using data in VR
- Correct for R=(nA nD)/(nC nB) by scaling the histogram in region D by 1/R (with R estimated from Zy+jet and Zjet MC)

Rzy+zjet

Only statistical uncertainties

(x labels the bin)

Summary

- ZH, H->yyD analysis ongoing for the first time in ATLAS
- Challenging analysis, due to background estimation strongly relying on data-driven techniques
 - Dominant background from fake MET and jets-faking-photons, while low irreducible background
 - Defined background estimation strategies (taking advantage of experience gained in monophoton analysis for in-situ background):
 - Electron-faking-photon: scaling data in WZ CR by electron fake-rate (from mono-photon analysis)
 - Jet-faking-photon: ABCD based on photon iso and ID
 - Fake MET: ABCD based on MET and dphi(MET,yll)
 - New method has been defined => choice of variables, regions definition, VR
 - Preliminary validation show promising results
 - Room for further optimization
 - Still need to study ttbar, VV, VVV, Higgs related backgrounds
- Fitting strategy still to be defined (mT or BDT as discriminating variable)
- Internal note in preparation

Backup slides

Objects selection

Electrons

 $p_T > 10 \text{ GeV}, |\eta| < 2.47$ $|\Delta z_0 \sin\theta| < 0.5 \text{ mm}$

- <u>Baseline</u> LooseAndBLayerLLH ID
- <u>Selected</u> $|d_0(\sigma)| < 5$ MediumLLH ID and FCLoose isolation

Muons

 $p_T > 10 \text{ GeV}, |\eta| < 2.7$ $|\Delta z_0 \sin\theta| < 0.5 \text{ mm}$

- <u>Baseline</u>
 Loose ID
- <u>Selected</u> $|d_0(\sigma)| < 3$ Medium ID and FLoose_VarRad isolation

Photons

```
p_T > 10 \text{ GeV}, |\eta| < 2.37
```

- <u>Baseline</u> Loose ID
- <u>Selected</u> $p_T > 25 \text{ GeV}$ Tight ID and FixedCutTight isolation

Jets

PFlow jets $p_T > 25 \text{ GeV}, |\eta| < 4.5$ Medium JVT WP

 E_T^{miss} : Tight WP

Cutflow in preliminar SR mc16a

AHOI optimized SR selections:

- 2 tight opposite sign muons/electrons with p_T^{lep1} > 26 GeV and p_T^{lep2} > 10 GeV
- 1 tight photon with $p_T^{\gamma} > 25 \text{ GeV}$
- Njet<=2 and Nbjet= $0p_T^{lep1}$ > 26 GeV
- 76 < m_{ll} < 116 GeV
- m_{lly} > 100 GeV

pass_sr_all_ee_Nominal::DoSave - print cutflow table: Assuming Br(H->y+Gr) = 5%															
	HyGr	HyGr1	HyGr10	HyGr20	HyGr30	HyGr40	Zgam	Zqcd	Тор	W	VVV	Wgam	HZy	EltoPhFakes	bkgs
Input	16.95 +/- 0.22	17.24 +/- 0.23	17.23 +/- 0.23	16.81 +/- 0.22	16.35 +/- 0.22	16.08 +/- 0.24	4070 +/- 77	3570 +/- 210	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	105.0 +/- 9.7	0.3612 +/- 0.0046	+/-	9130 +/- 230
CutMergeExt	16.95 +/- 0.22	17.24 +/- 0.23	17.23 +/- 0.23	16.81 +/- 0.22	16.35 +/- 0.22	16.08 +/- 0.24	3680 +/- 75	3570 +/- 210	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	105.0 +/- 9.7	0.3612 +/- 0.0046	+/-	8740 +/- 236
CutMCOverlap	16.95 +/- 0.22	17.24 +/- 0.23	17.23 +/- 0.23	16.81 +/- 0.22	16.35 +/- 0.22	16.08 +/- 0.24	3597 +/- 74	980 +/- 110	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	104.1 +/- 9.7	0.3612 +/- 0.0046	+/-	6070 +/- 130
CutTrig	16.69 +/- 0.22	16.99 +/- 0.22	16.95 +/- 0.22	16.58 +/- 0.22	16.08 +/- 0.22	15.83 +/- 0.24	3401 +/- 72	970 +/- 110	1083.7 +/- 8.9	134.0 +/- 2.8	120.9 +/- 1.9	99.6 +/- 9.5	0.3557 +/- 0.0046	+/-	5810 +/- 130
CutJetClean	16.69 +/- 0.22	16.99 +/- 0.22	16.95 +/- 0.22	16.58 +/- 0.22	16.08 +/- 0.22	15.83 +/- 0.24	3401 +/- 72	970 +/- 110	1083.7 +/- 8.9	134.0 +/- 2.8	120.9 +/- 1.9	99.6 +/- 9.5	0.3557 +/- 0.0046	+/-	5810 +/- 130
CutChannel	7.37 +/- 0.14	7.68 +/- 0.15	7.42 +/- 0.15	7.36 +/- 0.15	7.24 +/- 0.15	7.33 +/- 0.16	1162 +/- 41	373 +/- 68	302.9 +/- 4.7	49.4 +/- 1.4	34.6 +/- 1.0	36.1 +/- 5.5	0.1503 +/- 0.0029	+/-	1958 +/- 80
CutNjet	7.37 +/- 0.14	7.68 +/- 0.15	7.42 +/- 0.15	7.36 +/- 0.15	7.24 +/- 0.15	7.33 +/- 0.16	1162 +/- 41	373 +/- 68	302.9 +/- 4.7	49.4 +/- 1.4	34.6 +/- 1.0	36.1 +/- 5.5	0.1503 +/- 0.0029	+/-	1958 +/- 80
CutMet	7.37 +/- 0.14	7.68 +/- 0.15	7.42 +/- 0.15	7.36 +/- 0.15	7.24 +/- 0.15	7.33 +/- 0.16	1162 +/- 41	373 +/- 68	302.9 +/- 4.7	49.4 +/- 1.4	34.6 +/- 1.0	36.1 +/- 5.5	0.1503 +/- 0.0029	+/-	1958 +/- 80
CutNumPho	7.20 +/- 0.14	7.46 +/- 0.15	7.17 +/- 0.15	7.20 +/- 0.15	7.03 +/- 0.14	7.14 +/- 0.16	1110 +/- 40	375 +/- 67	276.6 +/- 4.5	47.8 +/- 1.3	33.3 +/- 1.0	35.5 +/- 5.5	0.1446 +/- 0.0029	+/-	1879 +/- 79
CutNumEle	7.20 +/- 0.14	7.46 +/- 0.15	7.17 +/- 0.15	7.20 +/- 0.15	7.03 +/- 0.14	7.14 +/- 0.16	1110 +/- 40	375 +/- 67	276.6 +/- 4.5	47.8 +/- 1.3	33.3 +/- 1.0	35.5 +/- 5.5	0.1446 +/- 0.0029	+/-	1879 +/- 79
CutVetoExtraLep	7.19 +/- 0.14	7.45 +/- 0.15	7.16 +/- 0.15	7.20 +/- 0.15	7.02 +/- 0.14	7.13 +/- 0.16	1103 +/- 40	374 +/- 67	263.1 +/- 4.4	47.6 +/- 1.3	33.1 +/- 1.0	35.5 +/- 5.5	0.1437 +/- 0.0029	+/-	1856 +/- 79
CutL0Pt	7.15 +/- 0.14	7.43 +/- 0.15	7.14 +/- 0.15	7.16 +/- 0.14	7.00 +/- 0.14	7.12 +/- 0.16	1059 +/- 39	375 +/- 67	257.6 +/- 4.3	45.7 +/- 1.3	32.7 +/- 1.0	33.7 +/- 5.4	0.1433 +/- 0.0029	+/-	1804 +/- 78
CutL1Pt	7.15 +/- 0.14	7.43 +/- 0.15	7.14 +/- 0.15	7.16 +/- 0.14	7.00 +/- 0.14	7.12 +/- 0.16	1059 +/- 39	375 +/- 67	257.6 +/- 4.3	45.7 +/- 1.3	32.7 +/- 1.0	33.7 +/- 5.4	0.1433 +/- 0.0029	+/-	1804 +/- 78
CutVetoBjets	7.15 +/- 0.14	7.43 +/- 0.15	7.14 +/- 0.15	7.16 +/- 0.14	7.00 +/- 0.14	7.12 +/- 0.16	1059 +/- 39	375 +/- 67	257.6 +/- 4.3	45.7 +/- 1.3	32.7 +/- 1.0	33.7 +/- 5.4	0.1433 +/- 0.0029	+/-	1804 +/- 78
CutHighMet	5.72 +/- 0.13	5.96 +/- 0.13	5.70 +/- 0.13	5.78 +/- 0.13	5.67 +/- 0.13	5.75 +/- 0.14	434 +/- 25	111 +/- 40	215.6 +/- 4.0	33.3 +/- 1.1	25.80 +/- 0.88	22.9 +/- 4.2	0.0940 +/- 0.0023	+/-	842 +/- 48
CutMass	5.44 +/- 0.12	5.68 +/- 0.13	5.38 +/- 0.13	5.52 +/- 0.13	5.42 +/- 0.13	5.46 +/- 0.14	157 +/- 15	110 +/- 40	55.6 +/- 2.0	14.98 +/- 0.69	8.22 +/- 0.45	3.3 +/- 1.6	0.0899 +/- 0.0022	+/-	349 +/- 43
CutPhPt	5.20 +/- 0.12	5.44 +/- 0.13	5.07 +/- 0.12	5.21 +/- 0.12	5.13 +/- 0.12	5.12 +/- 0.13	90 +/- 13	56 +/- 19	36.5 +/- 1.6	10.12 +/- 0.54	6.37 +/- 0.38	1.91 +/- 0.96	0.0689 +/- 0.0019	+/-	201 +/- 23
CutMllg	5.19 +/- 0.12	5.43 +/- 0.13	5.06 +/- 0.12	5.20 +/- 0.12	5.11 +/- 0.12	5.10 +/- 0.13	89 +/- 13	56 +/- 19	36.1 +/- 1.6	9.77 +/- 0.53	6.29 +/- 0.37	1.91 +/- 0.96	0.0689 +/- 0.0019	+/-	198 +/- 23
page or all up Nominal : DeSaya - print outflow table: Accuming $\frac{Dr/U-Su(Cr)}{Dr} = \frac{EV}{2}$															

hass_st_att_nn_u	VUIIIIIa1D03ave -	- bitur corritow r	ante, vesamitik i	DI(1-2y+01) = 0/0											
	HyGr	HyGr1	HyGr10	HyGr20	HyGr30	HyGr40	Zgam	Zqcd	Тор	W	VVV	Wgam	HZy	EltoPhFakes	bkgs
Input	16.95 +/- 0.22	17.24 +/- 0.23	17.23 +/- 0.23	16.81 +/- 0.22	16.35 +/- 0.22	16.08 +/- 0.24	4070 +/- 77	3570 +/- 210	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	105.0 +/- 9.7	0.3612 +/- 0.0046	+/-	9130 +/- 230
CutMergeExt	16.95 +/- 0.22	17.24 +/- 0.23	17.23 +/- 0.23	16.81 +/- 0.22	16.35 +/- 0.22	16.08 +/- 0.24	3680 +/- 75	3570 +/- 210	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	105.0 +/- 9.7	0.3612 +/- 0.0046	+/-	8740 +/- 230
CutMCOverlap	16.95 +/- 0.22	17.24 +/- 0.23	17.23 +/- 0.23	16.81 +/- 0.22	16.35 +/- 0.22	16.08 +/- 0.24	3597 +/- 74	980 +/- 110	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	104.1 +/- 9.7	0.3612 +/- 0.0046	+/-	6070 +/- 130
CutTrig	16.69 +/- 0.22	16.99 +/- 0.22	16.95 +/- 0.22	16.58 +/- 0.22	16.08 +/- 0.22	15.83 +/- 0.24	3401 +/- 72	970 +/- 110	1083.7 +/- 8.9	134.0 +/- 2.8	120.9 +/- 1.9	99.6 +/- 9.5	0.3557 +/- 0.0046	+/-	5810 +/- 130
CutJetClean	16.69 +/- 0.22	16.99 +/- 0.22	16.95 +/- 0.22	16.58 +/- 0.22	16.08 +/- 0.22	15.83 +/- 0.24	3401 +/- 72	970 +/- 110	1083.7 +/- 8.9	134.0 +/- 2.8	120.9 +/- 1.9	99.6 +/- 9.5	0.3557 +/- 0.0046	+/-	5810 +/- 130
CutChannel	9.24 +/- 0.17	9.22 +/- 0.17	9.48 +/- 0.17	9.16 +/- 0.16	8.79 +/- 0.16	8.45 +/- 0.17	2204 +/- 58	596 +/- 82	326.4 +/- 4.9	47.3 +/- 1.5	38.3 +/- 1.1	5.9 +/- 2.2	0.2025 +/- 0.0035	+/-	3220 +/- 100
CutNjet	9.24 +/- 0.17	9.22 +/- 0.17	9.48 +/- 0.17	9.16 +/- 0.16	8.79 +/- 0.16	8.45 +/- 0.17	2204 +/- 58	596 +/- 82	326.4 +/- 4.9	47.3 +/- 1.5	38.3 +/- 1.1	5.9 +/- 2.2	0.2025 +/- 0.0035	+/-	3220 +/- 100
CutMet	9.24 +/- 0.17	9.22 +/- 0.17	9.48 +/- 0.17	9.16 +/- 0.16	8.79 +/- 0.16	8.45 +/- 0.17	2204 +/- 58	596 +/- 82	326.4 +/- 4.9	47.3 +/- 1.5	38.3 +/- 1.1	5.9 +/- 2.2	0.2025 +/- 0.0035	+/-	3220 +/- 100
CutNumPho	8.98 +/- 0.16	8.86 +/- 0.16	9.19 +/- 0.17	8.92 +/- 0.16	8.57 +/- 0.16	8.24 +/- 0.17	2137 +/- 58	592 +/- 82	298.0 +/- 4.7	46.1 +/- 1.5	36.9 +/- 1.1	5.8 +/- 2.2	0.1944 +/- 0.0034	+/-	3120 +/- 100
CutNumMu	8.98 +/- 0.16	8.86 +/- 0.16	9.19 +/- 0.17	8.92 +/- 0.16	8.57 +/- 0.16	8.24 +/- 0.17	2137 +/- 58	592 +/- 82	298.0 +/- 4.7	46.1 +/- 1.5	36.9 +/- 1.1	5.8 +/- 2.2	0.1944 +/- 0.0034	+/-	3120 +/- 100
CutVetoExtraLep	8.98 +/- 0.16	8.85 +/- 0.16	9.18 +/- 0.17	8.91 +/- 0.16	8.57 +/- 0.16	8.24 +/- 0.17	2134 +/- 58	594 +/- 82	282.4 +/- 4.6	45.5 +/- 1.5	36.6 +/- 1.1	5.8 +/- 2.2	0.1928 +/- 0.0034	+/-	3099 +/- 100
CutL0Pt	8.98 +/- 0.16	8.83 +/- 0.16	9.17 +/- 0.17	8.90 +/- 0.16	8.56 +/- 0.16	8.23 +/- 0.17	2127 +/- 57	594 +/- 82	281.4 +/- 4.5	45.3 +/- 1.5	36.6 +/- 1.1	5.8 +/- 2.2	0.1925 +/- 0.0034	+/-	3090 +/- 100
CutL1Pt	8.98 +/- 0.16	8.83 +/- 0.16	9.17 +/- 0.17	8.90 +/- 0.16	8.56 +/- 0.16	8.23 +/- 0.17	2127 +/- 57	594 +/- 82	281.4 +/- 4.5	45.3 +/- 1.5	36.6 +/- 1.1	5.8 +/- 2.2	0.1925 +/- 0.0034	+/-	3090 +/- 100
CutVetoBjets	8.98 +/- 0.16	8.83 +/- 0.16	9.17 +/- 0.17	8.90 +/- 0.16	8.56 +/- 0.16	8.23 +/- 0.17	2127 +/- 57	594 +/- 82	281.4 +/- 4.5	45.3 +/- 1.5	36.6 +/- 1.1	5.8 +/- 2.2	0.1925 +/- 0.0034	+/-	3090 +/- 100
CutHighMet	7.18 +/- 0.15	7.15 +/- 0.15	7.37 +/- 0.15	7.24 +/- 0.15	6.97 +/- 0.14	6.65 +/- 0.15	929 +/- 37	261 +/- 55	232.1 +/- 4.1	32.6 +/- 1.3	29.55 +/- 0.96	3.1 +/- 1.1	0.1250 +/- 0.0027	+/-	1487 +/- 67
CutMass	6.83 +/- 0.14	6.81 +/- 0.14	6.94 +/- 0.14	6.86 +/- 0.14	6.61 +/- 0.14	6.30 +/- 0.15	331 +/- 26	224 +/- 53	58.0 +/- 2.0	15.23 +/- 0.88	8.98 +/- 0.49	0.03 +/- 0.47	0.1182 +/- 0.0026	+/-	637 +/- 59
CutPhPt	6.49 +/- 0.14	6.52 +/- 0.14	6.57 +/- 0.14	6.49 +/- 0.14	6.18 +/- 0.13	5.72 +/- 0.14	181 +/- 21	153 +/- 35	38.6 +/- 1.7	9.17 +/- 0.74	7.07 +/- 0.43	0.40 +/- 0.29	0.0885 +/- 0.0022	+/-	389 +/- 41
CutMllg	6.49 +/- 0.14	6.52 +/- 0.14	6.54 +/- 0.14	6.47 +/- 0.14	6.17 +/- 0.13	5.72 +/- 0.14	176 +/- 21	153 +/- 35	38.4 +/- 1.7	9.51 +/- 0.60	7.07 +/- 0.43	0.40 +/- 0.29	0.0885 +/- 0.0022	+/-	385 +/- 41

Cutflow in preliminar SR mc16d

AHOI optimized SR selections:

- 2 tight opposite sign muons/electrons with p_T^{lep1} > 26 GeV and p_T^{lep2} > 10 GeV
- 1 tight photon with $p_T^{\gamma} > 25 \text{ GeV}$
- Njet<=2 and Nbjet= $0p_T^{lep1}$ > 26 GeV
- 76 < m_{ll} < 116 GeV
- m_{lly} > 100 GeV

pass_sr_all_ee_Nominal::DoSave - print cutflow table: Assuming Br(H->y+Gr) = 5%															
	HyGr	HyGr1	HyGr10	HyGr20	HyGr30	HyGr40	Zgam	Zqcd	Тор	W	VVV	Wgam	HZy	EltoPhFakes	bkgs
Input	18.83 +/- 0.23	18.68 +/- 0.23	18.78 +/- 0.23	18.80 +/- 0.23	18.47 +/- 0.23	17.56 +/- 0.24	5691 +/- 92	5600 +/- 270	1098.9 +/- 9.0	148.9 +/- 1.9	133.0 +/- 2.0	93 +/- 10	0.3932 +/- 0.0048	+/-	12770 +/- 280
CutMergeExt	18.83 +/- 0.23	18.68 +/- 0.23	18.78 +/- 0.23	18.80 +/- 0.23	18.47 +/- 0.23	17.56 +/- 0.24	5215 +/- 90	5600 +/- 270	1098.9 +/- 9.0	148.9 +/- 1.9	133.0 +/- 2.0	93 +/- 10	0.3932 +/- 0.0048	+/-	12290 +/- 280
CutMCOverlap	18.83 +/- 0.23	18.68 +/- 0.23	18.78 +/- 0.23	18.80 +/- 0.23	18.47 +/- 0.23	17.56 +/- 0.24	5041 +/- 89	1850 +/- 150	1098.9 +/- 9.0	148.9 +/- 1.9	133.0 +/- 2.0	93 +/- 10	0.3932 +/- 0.0048	+/-	8370 +/- 170
CutTrig	18.69 +/- 0.23	18.46 +/- 0.23	18.57 +/- 0.23	18.59 +/- 0.23	18.24 +/- 0.23	17.33 +/- 0.24	4845 +/- 88	1840 +/- 150	1077.3 +/- 8.9	144.8 +/- 1.9	131.3 +/- 2.0	92 +/- 10	0.3879 +/- 0.0048	+/-	8130 +/- 170
CutJetClean	18.69 +/- 0.23	18.46 +/- 0.23	18.57 +/- 0.23	18.59 +/- 0.23	18.24 +/- 0.23	17.33 +/- 0.24	4845 +/- 88	1840 +/- 150	1077.3 +/- 8.9	144.8 +/- 1.9	131.3 +/- 2.0	92 +/- 10	0.3879 +/- 0.0048	+/-	8130 +/- 170
CutChannel	8.21 +/- 0.15	8.15 +/- 0.15	8.26 +/- 0.15	8.34 +/- 0.15	8.11 +/- 0.15	7.94 +/- 0.16	1665 +/- 52	660 +/- 100	301.9 +/- 4.8	52.5 +/- 1.1	36.4 +/- 1.0	33.8 +/- 6.4	0.1651 +/- 0.0031	+/-	2750 +/- 110
CutNjet	8.21 +/- 0.15	8.15 +/- 0.15	8.26 +/- 0.15	8.34 +/- 0.15	8.11 +/- 0.15	7.94 +/- 0.16	1665 +/- 52	660 +/- 100	301.9 +/- 4.8	52.5 +/- 1.1	36.4 +/- 1.0	33.8 +/- 6.4	0.1651 +/- 0.0031	+/-	2750 +/- 110
CutMet	8.21 +/- 0.15	8.15 +/- 0.15	8.26 +/- 0.15	8.34 +/- 0.15	8.11 +/- 0.15	7.94 +/- 0.16	1665 +/- 52	660 +/- 100	301.9 +/- 4.8	52.5 +/- 1.1	36.4 +/- 1.0	33.8 +/- 6.4	0.1651 +/- 0.0031	+/-	2750 +/- 110
CutNumPho	7.94 +/- 0.15	7.85 +/- 0.15	7.99 +/- 0.15	8.11 +/- 0.15	7.82 +/- 0.15	7.70 +/- 0.16	1568 +/- 50	655 +/- 98	275.6 +/- 4.6	50.4 +/- 1.1	34.63 +/- 1.00	32.4 +/- 6.2	0.1574 +/- 0.0030	+/-	2620 +/- 110
CutNumEle	7.94 +/- 0.15	7.85 +/- 0.15	7.99 +/- 0.15	8.11 +/- 0.15	7.82 +/- 0.15	7.70 +/- 0.16	1568 +/- 50	655 +/- 98	275.6 +/- 4.6	50.4 +/- 1.1	34.63 +/- 1.00	32.4 +/- 6.2	0.1574 +/- 0.0030	+/-	2620 +/- 110
CutVetoExtraLep	7.93 +/- 0.15	7.84 +/- 0.15	7.98 +/- 0.15	8.11 +/- 0.15	7.81 +/- 0.15	7.69 +/- 0.16	1564 +/- 50	653 +/- 98	260.1 +/- 4.4	50.0 +/- 1.1	34.45 +/- 1.00	32.4 +/- 6.2	0.1568 +/- 0.0030	+/-	2590 +/- 110
CutL0Pt	7.93 +/- 0.15	7.83 +/- 0.15	7.97 +/- 0.15	8.11 +/- 0.15	7.81 +/- 0.15	7.69 +/- 0.16	1559 +/- 50	653 +/- 98	259.6 +/- 4.4	49.9 +/- 1.1	34.40 +/- 1.00	32.3 +/- 6.2	0.1566 +/- 0.0030	+/-	2590 +/- 110
CutL1Pt	7.93 +/- 0.15	7.83 +/- 0.15	7.97 +/- 0.15	8.11 +/- 0.15	7.81 +/- 0.15	7.69 +/- 0.16	1559 +/- 50	653 +/- 98	259.6 +/- 4.4	49.9 +/- 1.1	34.40 +/- 1.00	32.3 +/- 6.2	0.1566 +/- 0.0030	+/-	2590 +/- 110
CutVetoBjets	7.93 +/- 0.15	7.83 +/- 0.15	7.97 +/- 0.15	8.11 +/- 0.15	7.81 +/- 0.15	7.69 +/- 0.16	1559 +/- 50	653 +/- 98	259.6 +/- 4.4	49.9 +/- 1.1	34.40 +/- 1.00	32.3 +/- 6.2	0.1566 +/- 0.0030	+/-	2590 +/- 110
CutHighMet	6.42 +/- 0.13	6.38 +/- 0.14	6.46 +/- 0.14	6.65 +/- 0.14	6.39 +/- 0.14	6.20 +/- 0.14	611 +/- 32	266 +/- 71	213.7 +/- 4.0	37.55 +/- 0.92	27.37 +/- 0.89	28.4 +/- 4.8	0.1044 +/- 0.0024	+/-	1185 +/- 78
CutMass	6.14 +/- 0.13	6.08 +/- 0.13	6.18 +/- 0.13	6.34 +/- 0.13	6.10 +/- 0.13	5.94 +/- 0.14	183 +/- 16	234 +/- 67	53.8 +/- 2.0	16.40 +/- 0.58	8.24 +/- 0.45	5.9 +/- 2.6	0.0984 +/- 0.0023	+/-	502 +/- 69
CutPhPt	5.87 +/- 0.13	5.80 +/- 0.13	5.91 +/- 0.13	5.98 +/- 0.13	5.73 +/- 0.13	5.49 +/- 0.13	99 +/- 12	56 +/- 29	36.0 +/- 1.6	10.71 +/- 0.45	6.49 +/- 0.41	4.5 +/- 2.4	0.0762 +/- 0.0020	+/-	213 +/- 31
CutMllg	5.86 +/- 0.13	5.80 +/- 0.13	5.90 +/- 0.13	5.98 +/- 0.13	5.72 +/- 0.13	5.48 +/- 0.13	95 +/- 12	56 +/- 29	35.6 +/- 1.6	10.32 +/- 0.44	6.49 +/- 0.41	4.5 +/- 2.4	0.0762 +/- 0.0020	+/-	209 +/- 31
pass sr all uu Nominal::DoSave - print cutflow table: Assuming Br(H->v+Gr) = 5%															
							-		-						

	HyGr	HyGr1	HyGr10	HyGr20	HyGr30	HyGr40	Zgam	Zqcd	Тор	W	VVV	Wgam	HZy	EltoPhFakes	bkgs
Input	18.83 +/- 0.23	18.68 +/- 0.23	18.78 +/- 0.23	18.80 +/- 0.23	18.47 +/- 0.23	17.56 +/- 0.24	5691 +/- 92	5600 +/- 270	1098.9 +/- 9.0	148.9 +/- 1.9	133.0 +/- 2.0	93 +/- 10	0.3932 +/- 0.0048	+/-	12770 +/- 280
CutMergeExt	18.83 +/- 0.23	18.68 +/- 0.23	18.78 +/- 0.23	18.80 +/- 0.23	18.47 +/- 0.23	17.56 +/- 0.24	5215 +/- 90	5600 +/- 270	1098.9 +/- 9.0	148.9 +/- 1.9	133.0 +/- 2.0	93 +/- 10	0.3932 +/- 0.0048	+/-	12290 +/- 280
CutMCOverlap	18.83 +/- 0.23	18.68 +/- 0.23	18.78 +/- 0.23	18.80 +/- 0.23	18.47 +/- 0.23	17.56 +/- 0.24	5041 +/- 89	1850 +/- 150	1098.9 +/- 9.0	148.9 +/- 1.9	133.0 +/- 2.0	93 +/- 10	0.3932 +/- 0.0048	+/-	8370 +/- 170
CutTrig	18.69 +/- 0.23	18.46 +/- 0.23	18.57 +/- 0.23	18.59 +/- 0.23	18.24 +/- 0.23	17.33 +/- 0.24	4845 +/- 88	1840 +/- 150	1077.3 +/- 8.9	144.8 +/- 1.9	131.3 +/- 2.0	92 +/- 10	0.3879 +/- 0.0048	+/-	8130 +/- 170
CutJetClean	18.69 +/- 0.23	18.46 +/- 0.23	18.57 +/- 0.23	18.59 +/- 0.23	18.24 +/- 0.23	17.33 +/- 0.24	4845 +/- 88	1840 +/- 150	1077.3 +/- 8.9	144.8 +/- 1.9	131.3 +/- 2.0	92 +/- 10	0.3879 +/- 0.0048	+/-	8130 +/- 170
CutChannel	10.41 +/- 0.17	10.25 +/- 0.17	10.26 +/- 0.17	10.18 +/- 0.17	10.06 +/- 0.17	9.33 +/- 0.17	3152 +/- 70	1180 +/- 110	319.0 +/- 4.9	51.3 +/- 1.2	41.0 +/- 1.1	8.4 +/- 4.0	0.2195 +/- 0.0036	+/-	4750 +/- 130
CutNjet	10.41 +/- 0.17	10.25 +/- 0.17	10.26 +/- 0.17	10.18 +/- 0.17	10.06 +/- 0.17	9.33 +/- 0.17	3152 +/- 70	1180 +/- 110	319.0 +/- 4.9	51.3 +/- 1.2	41.0 +/- 1.1	8.4 +/- 4.0	0.2195 +/- 0.0036	+/-	4750 +/- 130
CutMet	10.41 +/- 0.17	10.25 +/- 0.17	10.26 +/- 0.17	10.18 +/- 0.17	10.06 +/- 0.17	9.33 +/- 0.17	3152 +/- 70	1180 +/- 110	319.0 +/- 4.9	51.3 +/- 1.2	41.0 +/- 1.1	8.4 +/- 4.0	0.2195 +/- 0.0036	+/-	4750 +/- 130
CutNumPho	10.05 +/- 0.17	9.92 +/- 0.17	9.90 +/- 0.17	9.85 +/- 0.17	9.80 +/- 0.16	9.00 +/- 0.17	3020 +/- 69	1110 +/- 110	291.1 +/- 4.7	49.3 +/- 1.2	39.4 +/- 1.1	8.4 +/- 4.0	0.2091 +/- 0.0035	+/-	4520 +/- 130
CutNumMu	10.05 +/- 0.17	9.92 +/- 0.17	9.90 +/- 0.17	9.85 +/- 0.17	9.80 +/- 0.16	9.00 +/- 0.17	3020 +/- 69	1110 +/- 110	291.1 +/- 4.7	49.3 +/- 1.2	39.4 +/- 1.1	8.4 +/- 4.0	0.2091 +/- 0.0035	+/-	4520 +/- 130
CutVetoExtraLep	10.04 +/- 0.17	9.91 +/- 0.17	9.90 +/- 0.17	9.84 +/- 0.17	9.79 +/- 0.16	9.00 +/- 0.17	3015 +/- 69	1110 +/- 110	273.3 +/- 4.5	48.7 +/- 1.2	39.0 +/- 1.1	8.4 +/- 4.0	0.2081 +/- 0.0035	+/-	4500 +/- 130
CutL0Pt	10.04 +/- 0.17	9.91 +/- 0.17	9.90 +/- 0.17	9.84 +/- 0.17	9.79 +/- 0.16	9.00 +/- 0.17	3015 +/- 69	1110 +/- 110	273.3 +/- 4.5	48.7 +/- 1.2	39.0 +/- 1.1	8.4 +/- 4.0	0.2081 +/- 0.0035	+/-	4500 +/- 130
CutL1Pt	10.04 +/- 0.17	9.91 +/- 0.17	9.90 +/- 0.17	9.84 +/- 0.17	9.79 +/- 0.16	9.00 +/- 0.17	3015 +/- 69	1110 +/- 110	273.3 +/- 4.5	48.7 +/- 1.2	39.0 +/- 1.1	8.4 +/- 4.0	0.2081 +/- 0.0035	+/-	4500 +/- 130
CutVetoBjets	10.04 +/- 0.17	9.91 +/- 0.17	9.90 +/- 0.17	9.84 +/- 0.17	9.79 +/- 0.16	9.00 +/- 0.17	3015 +/- 69	1110 +/- 110	273.3 +/- 4.5	48.7 +/- 1.2	39.0 +/- 1.1	8.4 +/- 4.0	0.2081 +/- 0.0035	+/-	4500 +/- 130
CutHighMet	8.06 +/- 0.15	8.18 +/- 0.15	8.05 +/- 0.15	7.97 +/- 0.15	7.75 +/- 0.15	7.37 +/- 0.15	1335 +/- 47	605 +/- 80	225.4 +/- 4.1	36.1 +/- 1.0	31.62 +/- 0.96	7.9 +/- 4.0	0.1374 +/- 0.0028	+/-	2241 +/- 93
CutMass	7.60 +/- 0.15	7.77 +/- 0.15	7.56 +/- 0.15	7.50 +/- 0.14	7.29 +/- 0.14	7.00 +/- 0.15	440 +/- 28	509 +/- 74	57.2 +/- 2.0	18.91 +/- 0.63	9.12 +/- 0.44	0.70 +/- 0.41	0.1298 +/- 0.0027	+/-	1036 +/- 79
CutPhPt	7.25 +/- 0.14	7.35 +/- 0.14	7.20 +/- 0.14	7.06 +/- 0.14	6.95 +/- 0.14	6.57 +/- 0.14	260 +/- 21	216 +/- 47	37.6 +/- 1.6	11.95 +/- 0.49	6.88 +/- 0.39	0.70 +/- 0.41	0.1007 +/- 0.0024	+/-	533 +/- 51
CutMllg	7.25 +/- 0.14	7.35 +/- 0.14	7.18 +/- 0.14	7.04 +/- 0.14	6.93 +/- 0.14	6.56 +/- 0.14	256 +/- 21	216 +/- 47	37.3 +/- 1.6	11.46 +/- 0.47	6.88 +/- 0.39	0.70 +/- 0.41	0.1007 +/- 0.0024	+/-	528 +/- 51

Cutflow in preliminar SR mc16e

AHOI optimized SR selections:

- 2 tight opposite sign muons/electrons with p_T^{lep1} > 26 GeV and p_T^{lep2} > 10 GeV
- 1 tight photon with p_T^{γ} > 25 GeV
- Njet<=2 and Nbjet= $0p_T^{lep1} > 26 \text{ GeV}$
- 76 < m_{ll} < 116 GeV
- m_{lly} > 100 GeV

pass_sr_all_ee_N	Nominal::DoSave -	print cutflow t	table: Assuming	Br(H->y+Gr) = 5%											
	HyGr	HyGr1	HyGr10	HyGr20	HyGr30	HyGr40	Zgam	Zqcd	Тор	W	VVV	Wgam	HZy	EltoPhFakes	bkgs
Input	25.19 +/- 0.27	24.81 +/- 0.27	24.94 +/- 0.29	25.04 +/- 0.29	23.96 +/- 0.27	23.46 +/- 0.28	7320 +/- 100	7550 +/- 310	1488 +/- 10	201.6 +/- 3.1	173.6 +/- 2.3	129 +/- 12	0.5097 +/- 0.0056	+/-	16860 +/- 330
CutMergeExt	25.19 +/- 0.27	24.81 +/- 0.27	24.94 +/- 0.29	25.04 +/- 0.29	23.96 +/- 0.27	23.46 +/- 0.28	6709 +/- 98	7550 +/- 310	1488 +/- 10	201.6 +/- 3.1	173.6 +/- 2.3	129 +/- 12	0.5097 +/- 0.0056	+/-	16260 +/- 330
CutMCOverlap	25.19 +/- 0.27	24.81 +/- 0.27	24.94 +/- 0.29	25.04 +/- 0.29	23.96 +/- 0.27	23.46 +/- 0.28	6519 +/- 96	2410 +/- 170	1488 +/- 10	201.6 +/- 3.1	173.6 +/- 2.3	125 +/- 12	0.5097 +/- 0.0056	+/-	10910 +/- 190
CutTrig	25.01 +/- 0.27	24.66 +/- 0.27	24.73 +/- 0.29	24.79 +/- 0.29	23.78 +/- 0.27	23.30 +/- 0.28	6357 +/- 95	2370 +/- 170	1471 +/- 10	199.0 +/- 3.1	172.6 +/- 2.3	124 +/- 12	0.5056 +/- 0.0055	+/-	10700 +/- 190
CutJetClean	25.01 +/- 0.27	24.66 +/- 0.27	24.73 +/- 0.29	24.79 +/- 0.29	23.78 +/- 0.27	23.30 +/- 0.28	6357 +/- 95	2370 +/- 170	1471 +/- 10	199.0 +/- 3.1	172.6 +/- 2.3	124 +/- 12	0.5056 +/- 0.0055	+/-	10700 +/- 190
CutChannel	11.48 +/- 0.18	11.51 +/- 0.19	11.47 +/- 0.20	11.52 +/- 0.20	11.00 +/- 0.18	10.91 +/- 0.19	2206 +/- 57	990 +/- 110	420.2 +/- 5.6	72.8 +/- 1.9	49.5 +/- 1.2	47.6 +/- 7.6	0.2115 +/- 0.0036	+/-	3790 +/- 120
CutNjet	11.48 +/- 0.18	11.51 +/- 0.19	11.47 +/- 0.20	11.52 +/- 0.20	11.00 +/- 0.18	10.91 +/- 0.19	2206 +/- 57	990 +/- 110	420.2 +/- 5.6	72.8 +/- 1.9	49.5 +/- 1.2	47.6 +/- 7.6	0.2115 +/- 0.0036	+/-	3790 +/- 120
CutMet	11.48 +/- 0.18	11.51 +/- 0.19	11.47 +/- 0.20	11.52 +/- 0.20	11.00 +/- 0.18	10.91 +/- 0.19	2206 +/- 57	990 +/- 110	420.2 +/- 5.6	72.8 +/- 1.9	49.5 +/- 1.2	47.6 +/- 7.6	0.2115 +/- 0.0036	+/-	3790 +/- 120
CutNumPho	11.10 +/- 0.18	11.10 +/- 0.18	11.14 +/- 0.19	11.08 +/- 0.19	10.59 +/- 0.18	10.55 +/- 0.19	2124 +/- 56	960 +/- 110	385.3 +/- 5.4	69.8 +/- 1.8	47.5 +/- 1.2	46.4 +/- 7.5	0.2009 +/- 0.0035	+/-	3630 +/- 120
CutNumEle	11.10 +/- 0.18	11.10 +/- 0.18	11.14 +/- 0.19	11.08 +/- 0.19	10.59 +/- 0.18	10.55 +/- 0.19	2124 +/- 56	960 +/- 110	385.3 +/- 5.4	69.8 +/- 1.8	47.5 +/- 1.2	46.4 +/- 7.5	0.2009 +/- 0.0035	+/-	3630 +/- 120
CutVetoExtraLep	11.09 +/- 0.18	11.09 +/- 0.18	11.13 +/- 0.19	11.06 +/- 0.19	10.58 +/- 0.18	10.55 +/- 0.19	2121 +/- 56	950 +/- 110	368.3 +/- 5.2	69.2 +/- 1.8	47.2 +/- 1.2	46.4 +/- 7.5	0.1996 +/- 0.0035	+/-	3600 +/- 120
CutL0Pt	11.06 +/- 0.18	11.05 +/- 0.18	11.10 +/- 0.19	11.03 +/- 0.19	10.55 +/- 0.18	10.53 +/- 0.19	2053 +/- 55	920 +/- 110	362.3 +/- 5.2	67.6 +/- 1.8	46.6 +/- 1.2	45.0 +/- 7.5	0.1988 +/- 0.0035	+/-	3500 +/- 120
CutL1Pt	11.06 +/- 0.18	11.05 +/- 0.18	11.10 +/- 0.19	11.03 +/- 0.19	10.55 +/- 0.18	10.53 +/- 0.19	2053 +/- 55	920 +/- 110	362.3 +/- 5.2	67.6 +/- 1.8	46.6 +/- 1.2	45.0 +/- 7.5	0.1988 +/- 0.0035	+/-	3500 +/- 120
CutVetoBjets	11.06 +/- 0.18	11.05 +/- 0.18	11.10 +/- 0.19	11.03 +/- 0.19	10.55 +/- 0.18	10.53 +/- 0.19	2053 +/- 55	920 +/- 110	362.3 +/- 5.2	67.6 +/- 1.8	46.6 +/- 1.2	45.0 +/- 7.5	0.1988 +/- 0.0035	+/-	3500 +/- 120
CutHighMet	8.93 +/- 0.16	9.09 +/- 0.17	9.04 +/- 0.17	8.95 +/- 0.17	8.51 +/- 0.16	8.65 +/- 0.17	794 +/- 35	503 +/- 70	298.3 +/- 4.7	50.7 +/- 1.6	37.6 +/- 1.0	27.9 +/- 6.2	0.1292 +/- 0.0027	+/-	1712 +/- 79
CutMass	8.57 +/- 0.16	8.62 +/- 0.16	8.59 +/- 0.17	8.50 +/- 0.17	8.08 +/- 0.16	8.25 +/- 0.17	274 +/- 20	431 +/- 66	74.8 +/- 2.3	23.61 +/- 0.87	11.60 +/- 0.53	4.8 +/- 1.5	0.1231 +/- 0.0026	+/-	820 +/- 69
CutPhPt	8.13 +/- 0.15	8.24 +/- 0.16	8.15 +/- 0.17	8.04 +/- 0.16	7.58 +/- 0.15	7.67 +/- 0.16	139 +/- 13	260 +/- 53	48.3 +/- 1.8	16.09 +/- 0.71	9.10 +/- 0.48	4.4 +/- 1.5	0.0943 +/- 0.0023	+/-	477 +/- 55
CutMllg	8.12 +/- 0.15	8.24 +/- 0.16	8.13 +/- 0.17	8.03 +/- 0.16	7.58 +/- 0.15	7.67 +/- 0.16	134 +/- 13	260 +/- 53	47.9 +/- 1.8	15.62 +/- 0.68	9.04 +/- 0.48	4.4 +/- 1.5	0.0943 +/- 0.0023	+/-	471 +/- 55
pass_sr_all_uu_N	lominal::DoSave –	print cutflow t	table: Assuming	Br(H->y+Gr) = 5%											

	HyGr	HyGr1	HyGr10	HyGr20	HyGr30	HyGr40	Zgam	Zqcd	Тор	W	VVV	Wgam	HZy	EltoPhFakes	bkgs
Input	25.19 +/- 0.27	24.81 +/- 0.27	24.94 +/- 0.29	25.04 +/- 0.29	23.96 +/- 0.27	23.46 +/- 0.28	7320 +/- 100	7550 +/- 310	1488 +/- 10	201.6 +/- 3.1	173.6 +/- 2.3	129 +/- 12	0.5097 +/- 0.0056	+/-	16860 +/- 330
CutMergeExt	25.19 +/- 0.27	24.81 +/- 0.27	24.94 +/- 0.29	25.04 +/- 0.29	23.96 +/- 0.27	23.46 +/- 0.28	6709 +/- 98	7550 +/- 310	1488 +/- 10	201.6 +/- 3.1	173.6 +/- 2.3	129 +/- 12	0.5097 +/- 0.0056	+/-	16260 +/- 330
CutMCOverlap	25.19 +/- 0.27	24.81 +/- 0.27	24.94 +/- 0.29	25.04 +/- 0.29	23.96 +/- 0.27	23.46 +/- 0.28	6519 +/- 96	2410 +/- 170	1488 +/- 10	201.6 +/- 3.1	173.6 +/- 2.3	125 +/- 12	0.5097 +/- 0.0056	+/-	10910 +/- 190
CutTrig	25.01 +/- 0.27	24.66 +/- 0.27	24.73 +/- 0.29	24.79 +/- 0.29	23.78 +/- 0.27	23.30 +/- 0.28	6357 +/- 95	2370 +/- 170	1471 +/- 10	199.0 +/- 3.1	172.6 +/- 2.3	124 +/- 12	0.5056 +/- 0.0055	+/-	10700 +/- 190
CutJetClean	25.01 +/- 0.27	24.66 +/- 0.27	24.73 +/- 0.29	24.79 +/- 0.29	23.78 +/- 0.27	23.30 +/- 0.28	6357 +/- 95	2370 +/- 170	1471 +/- 10	199.0 +/- 3.1	172.6 +/- 2.3	124 +/- 12	0.5056 +/- 0.0055	+/-	10700 +/- 190
CutChannel	13.45 +/- 0.20	13.05 +/- 0.20	13.15 +/- 0.21	13.18 +/- 0.21	12.71 +/- 0.19	12.32 +/- 0.20	4123 +/- 76	1370 +/- 130	445.1 +/- 5.7	68.2 +/- 1.9	55.1 +/- 1.3	2.7 +/- 2.6	0.2894 +/- 0.0042	+/-	6060 +/- 150
CutNjet	13.45 +/- 0.20	13.05 +/- 0.20	13.15 +/- 0.21	13.18 +/- 0.21	12.71 +/- 0.19	12.32 +/- 0.20	4123 +/- 76	1370 +/- 130	445.1 +/- 5.7	68.2 +/- 1.9	55.1 +/- 1.3	2.7 +/- 2.6	0.2894 +/- 0.0042	+/-	6060 +/- 150
CutMet	13.45 +/- 0.20	13.05 +/- 0.20	13.15 +/- 0.21	13.18 +/- 0.21	12.71 +/- 0.19	12.32 +/- 0.20	4123 +/- 76	1370 +/- 130	445.1 +/- 5.7	68.2 +/- 1.9	55.1 +/- 1.3	2.7 +/- 2.6	0.2894 +/- 0.0042	+/-	6060 +/- 150
CutNumPho	13.00 +/- 0.20	12.64 +/- 0.19	12.68 +/- 0.20	12.74 +/- 0.20	12.30 +/- 0.19	11.91 +/- 0.20	3929 +/- 74	1280 +/- 120	404.0 +/- 5.5	65.7 +/- 1.9	52.2 +/- 1.2	3.1 +/- 2.6	0.2742 +/- 0.0041	+/-	5740 +/- 140
CutNumMu	13.00 +/- 0.20	12.64 +/- 0.19	12.68 +/- 0.20	12.74 +/- 0.20	12.30 +/- 0.19	11.91 +/- 0.20	3929 +/- 74	1280 +/- 120	404.0 +/- 5.5	65.7 +/- 1.9	52.2 +/- 1.2	3.1 +/- 2.6	0.2742 +/- 0.0041	+/-	5740 +/- 140
CutVetoExtraLep	12.99 +/- 0.20	12.62 +/- 0.19	12.67 +/- 0.20	12.73 +/- 0.20	12.30 +/- 0.19	11.90 +/- 0.20	3927 +/- 74	1280 +/- 120	381.8 +/- 5.3	64.8 +/- 1.9	51.7 +/- 1.2	3.1 +/- 2.6	0.2727 +/- 0.0041	+/-	5710 +/- 140
CutL0Pt	12.99 +/- 0.20	12.62 +/- 0.19	12.67 +/- 0.20	12.73 +/- 0.20	12.30 +/- 0.19	11.90 +/- 0.20	3927 +/- 74	1280 +/- 120	381.8 +/- 5.3	64.8 +/- 1.9	51.7 +/- 1.2	3.1 +/- 2.6	0.2727 +/- 0.0041	+/-	5710 +/- 140
CutL1Pt	12.99 +/- 0.20	12.62 +/- 0.19	12.67 +/- 0.20	12.73 +/- 0.20	12.30 +/- 0.19	11.90 +/- 0.20	3927 +/- 74	1280 +/- 120	381.8 +/- 5.3	64.8 +/- 1.9	51.7 +/- 1.2	3.1 +/- 2.6	0.2727 +/- 0.0041	+/-	5710 +/- 140
CutVetoBjets	12.99 +/- 0.20	12.62 +/- 0.19	12.67 +/- 0.20	12.73 +/- 0.20	12.30 +/- 0.19	11.90 +/- 0.20	3927 +/- 74	1280 +/- 120	381.8 +/- 5.3	64.8 +/- 1.9	51.7 +/- 1.2	3.1 +/- 2.6	0.2727 +/- 0.0041	+/-	5710 +/- 140
CutHighMet	10.50 +/- 0.18	10.21 +/- 0.17	10.15 +/- 0.18	10.40 +/- 0.18	10.02 +/- 0.17	9.70 +/- 0.18	1764 +/- 48	695 +/- 91	313.2 +/- 4.8	48.6 +/- 1.5	42.2 +/- 1.1	0.9 +/- 2.4	0.1755 +/- 0.0032	+/-	2860 +/- 100
CutMass	9.92 +/- 0.17	9.67 +/- 0.17	9.62 +/- 0.18	9.84 +/- 0.18	9.51 +/- 0.17	9.09 +/- 0.17	561 +/- 28	634 +/- 88	82.7 +/- 2.5	23.39 +/- 0.87	12.97 +/- 0.55	-1.5 +/- 1.9	0.1654 +/- 0.0031	+/-	1313 +/- 92
CutPhPt	9.48 +/- 0.17	9.24 +/- 0.16	9.17 +/- 0.17	9.38 +/- 0.17	8.98 +/- 0.16	8.48 +/- 0.17	323 +/- 20	200 +/- 55	55.4 +/- 2.0	14.95 +/- 0.66	9.80 +/- 0.46	-1.7 +/- 1.8	0.1275 +/- 0.0027	+/-	601 +/- 59
CutMllg	9.47 +/- 0.17	9.23 +/- 0.16	9.16 +/- 0.17	9.37 +/- 0.17	8.97 +/- 0.16	8.46 +/- 0.17	318 +/- 20	200 +/- 55	55.1 +/- 2.0	14.42 +/- 0.65	9.76 +/- 0.46	-1.7 +/- 1.8	0.1275 +/- 0.0027	+/-	596 +/- 58

1

ee VS $\mu\mu$ channel discrepancy

S. Resconi

1	HyGr	Zgam	Zqcd		HyGr	Zgam	Zqcd
Input	16.95 +/- 0.22	4070 +/- 77	3570 +/- 210	Input	16.95 +/- 0.22	4070 +/- 77	3570 +/- 210
CutMergeExt	16.95 +/- 0.22	3680 +/- 75	3570 +/- 210	CutMergeExt	16.95 +/- 0.22	3680 +/- 75	3570 +/- 210
CutMCOverlap	16.95 +/- 0.22	3597 +/- 74	980 +/- 110	CutMCOverlap	16.95 +/- 0.22	3597 +/- 74	980 +/- 110
CutTrig	16.69 +/- 0.22	3401 +/- 72	970 +/- 110	CutTrig	16.69 +/- 0.22	3401 +/- 72	970 +/- 110
CutJetClean	16.69 +/- 0.22	3401 +/- 72	970 +/- 110	CutJetClean	16.69 +/- 0.22	3401 +/- 72	970 +/- 110
CutChannel	7.37 +/- 0.14	1162 +/- 41	373 +/- 68	CutChannel	9.24 +/- 0.17	2204 +/- 58	596 +/- 82
CutNjet	7.37 +/- 0.14	1162 +/- 41	373 +/- 68	CutNjet	9.24 +/- 0.17	2204 +/- 58	596 +/- 82
CutMet	7.37 +/- 0.14	1162 +/- 41	373 +/- 68	CutMet	9.24 +/- 0.17	2204 +/- 58	596 +/- 82
CutNumPho	7.20 +/- 0.14	1110 +/- 40	375 +/- 67	CutNumPho	8.98 +/- 0.16	2137 +/- 58	592 +/- 82
CutNumEle	7.20 +/- 0.14	1110 +/- 40	375 +/- 67	CutNumMu	8.98 +/- 0.16	2137 +/- 58	592 +/- 82
CutVetoExtraLep	7.19 +/- 0.14	1103 +/- 40	374 +/- 67	CutVetoExtraLep	8.98 +/- 0.16	2134 +/- 58	594 +/- 82
CutL0Pt	7.15 +/- 0.14	1059 +/- 39	375 +/- 67	CutL0Pt	8.98 +/- 0.16	2127 +/- 57	594 +/- 82
CutL1Pt	7.15 +/- 0.14	1059 +/- 39	375 +/- 67	CutL1Pt	8.98 +/- 0.16	2127 +/- 57	594 +/- 82
CutVetoBjets	7.15 +/- 0.14	1059 +/- 39	375 +/- 67	CutVetoBjets	8.98 +/- 0.16	2127 +/- 57	594 +/- 82
CutHighMet	5.72 +/- 0.13	434 +/- 25	111 +/- 40	CutHighMet	7.18 +/- 0.15	929 +/- 37	261 +/- 55
CutMass	5.44 +/- 0.12	157 +/- 15	110 +/- 40	CutMass	6.83 +/- 0.14	331 +/- 26	224 +/- 53
CutPhPt	5.20 +/- 0.12	90 +/- 13	56 +/- 19	CutPhPt	6.49 +/- 0.14	181 +/- 21	153 +/- 35
CutMllg	5.19 +/- 0.12	89 +/- 13	56 +/- 19	CutMllg	6.49 +/- 0.14	176 +/- 21	153 +/- 35

Higher differences in Zgam and Zqcd wrt signal •

- Arising from MET distribution (MET>50 GeV cut included \bullet in "Input" yields)
- Discrepancy investigated removing MET > 50 preselections
 - Requiring 2 opposite charge leptons:
 - Signal uu/ee=1.32 •
 - Zv uu/ee = 1.25
 - 2 opposite charge leptons && MET > 50
 - Signal uu/ee = 1.32
 - Zy. uu/ee = 2.04

- MET experts have been contacted
 - Agree some differences are expected due to different e/jet and mu/jet OR treatment in MET
 - muon/pfjet bugfix in OR is included in SusyTools but suggestion to check the impact of the flag UseMuonPFlowBugfix in METMaker (default = False) => Need to implement this fix in SUSYTools

ee VS $\mu\mu$ channel discrepancy

10-

10

- Main difference in jet term (8% mean value difference in signal, 11% in Zy). Can be related to different treatement of muon-jet and electronjet overlaps
- Higher impact on global MET in bkg wrt signal, due to higher importance of Jet Term relative to the other MET terms
 - Background: Jet Term value similar to Lepton Term and higher than Photon Term
 - Signal: Jet Term subdominant

ee VS $\mu\mu$ channel discrepancy

Check behaviour with EMTopo jets (no muon/pfjet bug) to understand if the bug can be the reason for the differences)

Higher difference with PFlow than EMTopo. Might be due to muon/pfjet bug. Worth testing the bug fix in MET

Photon pT in low MET region: data/MC

(H. Hofgard)

Machine Learning studies BDT results

Permutation Feature Importance: Measure the importance of a feature by calculating the increase in the model's prediction error after permuting the feature

(E. Hofgard)

SR optimization with Machine Learning Impact of BDT cut in SR

SR (AHOI optimization) BDT > 0.85

ee channel

pass_sr_all_ee_Nominal::DoSave - print cutflow table: Assuming Br(H->y+Gr) = 5%

	HyGr	Zgam	Zqcd	Тор	VV	VVV	Wgam	HZy	EltoPhFakes	bkgs
Input	16.95 +/- 0.22	4070 +/- 77	3570 +/- 210	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	105.0 +/- 9.7	0.3612 +/- 0.0046	+/-	9130 +/- 230
CutMergeExt	16.95 +/- 0.22	3680 +/- 75	3570 +/- 210	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	105.0 +/- 9.7	0.3612 +/- 0.0046	+/-	8740 +/- 230
CutMCOverlap	16.95 +/- 0.22	3597 +/- 74	980 +/- 110	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	104.1 +/- 9.7	0.3612 +/- 0.0046	+/-	6070 +/- 130
CutTrig	16.69 +/- 0.22	3401 +/- 72	970 +/- 110	1083.7 +/- 8.9	134.0 +/- 2.8	120.9 +/- 1.9	99.6 +/- 9.5	0.3557 +/- 0.0046	+/-	5810 +/- 130
CutJetClean	16.69 +/- 0.22	3401 +/- 72	970 +/- 110	1083.7 +/- 8.9	134.0 +/- 2.8	120.9 +/- 1.9	99.6 +/- 9.5	0.3557 +/- 0.0046	+/-	5810 +/- 130
CutChannel	7.37 +/- 0.14	1162 +/- 41	373 +/- 68	302.9 +/- 4.7	49.4 +/- 1.4	34.6 +/- 1.0	36.1 +/- 5.5	0.1503 +/- 0.0029	+/-	1958 +/- 80
CutNjet	7.37 +/- 0.14	1162 +/- 41	373 +/- 68	302.9 +/- 4.7	49.4 +/- 1.4	34.6 +/- 1.0	36.1 +/- 5.5	0.1503 +/- 0.0029	+/-	1958 +/- 80
CutMet	7.37 +/- 0.14	1162 +/- 41	373 +/- 68	302.9 +/- 4.7	49.4 +/- 1.4	34.6 +/- 1.0	36.1 +/- 5.5	0.1503 +/- 0.0029	+/-	1958 +/- 80
CutNumPho	7.20 +/- 0.14	1110 +/- 40	375 +/- 67	276.6 +/- 4.5	47.8 +/- 1.3	33.3 +/- 1.0	35.5 +/- 5.5	0.1446 +/- 0.0029	+/-	1879 +/- 79
CutNumEle	7.20 +/- 0.14	1110 +/- 40	375 +/- 67	276.6 +/- 4.5	47.8 +/- 1.3	33.3 +/- 1.0	35.5 +/- 5.5	0.1446 +/- 0.0029	+/-	1879 +/- 79
CutVetoExtraLep	7.19 +/- 0.14	1103 +/- 40	374 +/- 67	263.1 +/- 4.4	47.6 +/- 1.3	33.1 +/- 1.0	35.5 +/- 5.5	0.1437 +/- 0.0029	+/-	1856 +/- 79
CutL0Pt	7.15 +/- 0.14	1059 +/- 39	375 +/- 67	257.6 +/- 4.3	45.7 +/- 1.3	32.7 +/- 1.0	33.7 +/- 5.4	0.1433 +/- 0.0029	+/-	1804 +/- 78
CutL1Pt	7.15 +/- 0.14	1059 +/- 39	375 +/- 67	257.6 +/- 4.3	45.7 +/- 1.3	32.7 +/- 1.0	33.7 +/- 5.4	0.1433 +/- 0.0029	+/-	1804 +/- 78
CutVetoBjets	7.15 +/- 0.14	1059 +/- 39	375 +/- 67	257.6 +/- 4.3	45.7 +/- 1.3	32.7 +/- 1.0	33.7 +/- 5.4	0.1433 +/- 0.0029	+/-	1804 +/- 78
CutHighMet	5.72 +/- 0.13	434 +/- 25	111 +/- 40	215.6 +/- 4.0	33.3 +/- 1.1	25.80 +/- 0.88	22.9 +/- 4.2	0.0940 +/- 0.0023	+/-	842 +/- 48
CutMass	5.44 +/- 0.12	157 +/- 15	110 +/- 40	55.6 +/- 2.0	14.98 +/- 0.69	8.22 +/- 0.45	3.3 +/- 1.6	0.0899 +/- 0.0022	+/-	349 +/- 43
CutPhPt	5.20 +/- 0.12	90 +/- 13	56 +/- 19	36.5 +/- 1.6	10.12 +/- 0.54	6.37 +/- 0.38	1.91 +/- 0.96	0.0689 +/- 0.0019	+/-	201 +/- 23
CutMllg	5.19 +/- 0.12	89 +/- 13	56 +/- 19	36.1 +/- 1.6	9.77 +/- 0.53	6.29 +/- 0.37	1.91 +/- 0.96	0.0689 +/- 0.0019	+/-	198 +/- 23
BDT_Cut	2.025 +/- 0.07	0.17 +/- 0.17	+/-	0.120 +/- 0.070	0.105 +/- 0.089	0.169 +/- 0.054	+/-	0.00357 +/- 0.00042	+/-	0.57 +/- 0.21

$\mu\mu$ channel

pass_sr_all_uu_Nominal::DoSave -

hand 7										
	HyGr	Zgam	Zqcd	Тор	VV	VVV	Wgam	HZy	EltoPhFakes	bkgs
Input	16.95 +/- 0.22	4070 +/- 77	3570 +/- 210	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	105.0 +/- 9.7	0.3612 +/- 0.0046	+/-	9130 +/- 230
CutMergeExt	16.95 +/- 0.22	3680 +/- 75	3570 +/- 210	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	105.0 +/- 9.7	0.3612 +/- 0.0046	+/-	8740 +/- 230
CutMCOverlap	16.95 +/- 0.22	3597 +/- 74	980 +/- 110	1122.3 +/- 9.0	138.6 +/- 2.8	123.7 +/- 1.9	104.1 +/- 9.7	0.3612 +/- 0.0046	+/-	6070 +/- 130
CutTrig	16.69 +/- 0.22	3401 +/- 72	970 +/- 110	1083.7 +/- 8.9	134.0 +/- 2.8	120.9 +/- 1.9	99.6 +/- 9.5	0.3557 +/- 0.0046	+/-	5810 +/- 130
CutJetClean	16.69 +/- 0.22	3401 +/- 72	970 +/- 110	1083.7 +/- 8.9	134.0 +/- 2.8	120.9 +/- 1.9	99.6 +/- 9.5	0.3557 +/- 0.0046	+/-	5810 +/- 130
CutChannel	9.24 +/- 0.17	2204 +/- 58	596 +/- 82	326.4 +/- 4.9	47.3 +/- 1.5	38.3 +/- 1.1	5.9 +/- 2.2	0.2025 +/- 0.0035	+/-	3220 +/- 100
CutNjet	9.24 +/- 0.17	2204 +/- 58	596 +/- 82	326.4 +/- 4.9	47.3 +/- 1.5	38.3 +/- 1.1	5.9 +/- 2.2	0.2025 +/- 0.0035	+/-	3220 +/- 100
CutMet	9.24 +/- 0.17	2204 +/- 58	596 +/- 82	326.4 +/- 4.9	47.3 +/- 1.5	38.3 +/- 1.1	5.9 +/- 2.2	0.2025 +/- 0.0035	+/-	3220 +/- 100
CutNumPho	8.98 +/- 0.16	2137 +/- 58	592 +/- 82	298.0 +/- 4.7	46.1 +/- 1.5	36.9 +/- 1.1	5.8 +/- 2.2	0.1944 +/- 0.0034	+/-	3120 +/- 100
CutNumMu	8.98 +/- 0.16	2137 +/- 58	592 +/- 82	298.0 +/- 4.7	46.1 +/- 1.5	36.9 +/- 1.1	5.8 +/- 2.2	0.1944 +/- 0.0034	+/-	3120 +/- 100
CutVetoExtraLep	8.98 +/- 0.16	2134 +/- 58	594 +/- 82	282.4 +/- 4.6	45.5 +/- 1.5	36.6 +/- 1.1	5.8 +/- 2.2	0.1928 +/- 0.0034	+/-	3099 +/- 100
CutL0Pt	8.98 +/- 0.16	2127 +/- 57	594 +/- 82	281.4 +/- 4.5	45.3 +/- 1.5	36.6 +/- 1.1	5.8 +/- 2.2	0.1925 +/- 0.0034	+/-	3090 +/- 100
CutL1Pt	8.98 +/- 0.16	2127 +/- 57	594 +/- 82	281.4 +/- 4.5	45.3 +/- 1.5	36.6 +/- 1.1	5.8 +/- 2.2	0.1925 +/- 0.0034	+/-	3090 +/- 100
CutVetoBjets	8.98 +/- 0.16	2127 +/- 57	594 +/- 82	281.4 +/- 4.5	45.3 +/- 1.5	36.6 +/- 1.1	5.8 +/- 2.2	0.1925 +/- 0.0034	+/-	3090 +/- 100
CutHighMet	7.18 +/- 0.15	929 +/- 37	261 +/- 55	232.1 +/- 4.1	32.6 +/- 1.3	29.55 +/- 0.96	3.1 +/- 1.1	0.1250 +/- 0.0027	+/-	1487 +/- 67
CutMass	6.83 +/- 0.14	331 +/- 26	224 +/- 53	58.0 +/- 2.0	15.23 +/- 0.88	8.98 +/- 0.49	0.03 +/- 0.47	0.1182 +/- 0.0026	+/-	637 +/- 59
CutPhPt	6.49 +/- 0.14	181 +/- 21	153 +/- 35	38.6 +/- 1.7	9.17 +/- 0.74	7.07 +/- 0.43	0.40 +/- 0.29	0.0885 +/- 0.0022	+/-	389 +/- 41
CutMllg	6.49 +/- 0.14	176 +/- 21	153 +/- 35	38.4 +/- 1.7	9.51 +/- 0.60	7.07 +/- 0.43	0.40 +/- 0.29	0.0885 +/- 0.0022	+/-	385 +/- 41
BDT_Cut	2.378 +/- 0.085	+/-	+/-	0.071 +/- 0.049	0.197 +/- 0.069	0.189 +/- 0.066	+/-	0.00485 +/- 0.00051	+/-	0.46 +/- 0.11

CMS results

Process	Yield
Data	14
Nonresonant	2.4 ± 1.1
WZ	8.1 ± 2.0
ZZ	1.5 ± 0.3
$Z\gamma$	0.7 ± 0.7
Other	0.6 ± 0.3
Total background	13.3 ± 3.8
ZH ₁₂₅ (product of acceptance and efficiency)	$17.9 \pm 1.2~(2.13 \pm 0.14\%)$
ZH_{200} (product of acceptance and efficiency)	$12.3 \pm 0.8~(6.48 \pm 0.42\%)$
ZH_{300} (product of acceptance and efficiency)	$3.9\pm0.2~(10.20\pm0.51\%)$

Zy+jets background

Variable correlation

2.5

min dphi MET-objects

1.5

1.5

min dphi MET-objects

2.5

Fake MET background MET-based ABCD with VS without METsig cut in VR

- All regions dominated by Zy+jets and Z+jets background
- In situ estimates for other backgrounds still not available. Preliminary tests with temporary solutions

=> Rzyzjet: evaluating R from Zy+jets AND Z+jets (both are characterized by sizeable fake MET)

=> Rzy : R from Zy only

For background not used in R estimation, MC yields in each region subtracted from data

$\mu\mu$ channel	Data in VR	Rmc	Rdata	MC	Data	ABCD
	Rzyzjet + metsig	1.468 +-0.170	1.230 +-0.113	1582 +- 111	1918 +- 66	2291 +- 329
	Rzyzjet	1.118 +- 0.098	1.019 +- 0.079	2646 +- 133	3088 +- 109	3388 +- 377
	Rzy + metsig	1.169 +-0.100	1.034 +-0.170	784 +- 35	1120 +- 124	1266 +- 188
	Rzy	1.154 +- 0.077	1.039 +- 0.130	1705 +- 66	2146 +- 159	2384 +- 289
ee channel	 Data in VR	Rmc	Rdata	MC	Data	ABCD
	Rzyzjet + metsig	2.153 +-0.330	2.035 +-0.269	1120 +- 92	1402 +- 60	1483 +- 293
	Rzyzjet	1.267 +- 0.128	1.202 +- 0.110	1976 +- 106	2418 +- 80	2547 +- 338
	Rzy + metsig	1.523 +-0.172	1.583 +-0.356	555 +- 33	838 +- 105	806 +- 176
	Rzy	1.080 +- 0.082	1.058 +- 0.156	1175 +- 44	1617 +- 125	1651 +- 242

=> Discrepancy between R with and without METsig cut, but R from data is consistent with R from MC => ABCD estimates consistent with observed data

Fake MET background TRooABCD, ee channel

mT distribution in region A' from simultaneous fit on the B,C,D regions with TRooABCD

- mT histograms in each B,C,D region as input
- Using data in VR, and subtracting Zjets from MC (first approximation)
- Correct for R=(nA nD)/(nC nB) by scaling the histogram in region D by 1/R (with R estimated from Zy+jet MC)

Zy MC sample

VR Bkg Predicted = 641.196 ± 54.5794 (syst.) VR Observed = 585.401 (-1.0o)

Fit Status = 0 (OK) Fit 2LLR p-value = 0.657311 (-0.4σ)

Only statistical uncertainties

 $nA(x) = (m_0+m_1(x)) \times nB(x)$ $nC(x) = (m_0+m_1(x)) \times nD(x)$

(x labels the bin)

Fake MET background TRooABCD, uu channel

mT distribution in region A' from simultaneous fit on the B,C,D regions with TRooABCD

- mT histograms in each B,C,D region as input
- Using data in VR, and subtracting Zjets from MC (first approximation)
- Correct for R=(nA nD)/(nC nB) by scaling the histogram in region D by 1/R (with R estimated from Zy+jet MC)

Only statistical uncertainties

