

A decade ago:

- discussions with R. Gallino and C. Travaglio about the "LEPP" idea
- discussions with U. Ott and A. Davis about isotopic anomalies in SiC grains
- basic v-driven wind paper by R. Hoffman et al. (1996, 2008)
- no convincing solution of primary production of light p-isotopes; with the hot topic of S.S. ⁹²Mo/⁹⁴Mo

More recently:

uncertainties of light trans-Fe S.S.-r "residuals"

Example ⁹⁶ Zr i	r-"residual":
Käppeler '89	100 %
Arlandini '99	45.0 %
Bisterzo '11	48.7 %
Bisterzo '14	61.3 %
Tripella '16	98.6 %
4 . .	
to be compare	a to r-"primary":
Kratz 19	98.4 %

Today:

Correlations of r-process elements in VMP halo stars

When Khalil Farougi and I started in 2018, our main goal was to distinguish between

- r-elements correlated (co-produced?) with Fe, and
- r-elements uncorrelated (not produced?) with Fe

In contrast to the numerous model-speculation papers after the GW-NSM event, our approach primarily based on experimental "facts": databases for UMP halostars SAGA (and JINAbase); $[Fe/H] \leq -2.5$

Choice of 3 "typical" r-elements:

- \frown Z = 38 Sr
- \frown Z = 63 Eu
- \cap Z = 90 Th

classical "weak-r" element \rightarrow SN-type ? classical "main-r" element \rightarrow Merger-type ? classical "actinide-boost" \rightarrow Merger-type ?

Choice of "typical" r-parameters:

- [Eu/Fe] ()
- (Sr/Eu)

- "r-enrichment" \rightarrow historical stellar classes r-poor, r-I, r-II
- "weak-r"/"main-r" \rightarrow indication of fractions SN & Merger ?
 - \rightarrow indication of "pure" SN and/or Merger signatures ?
 - \rightarrow correlation with metallicity [Fe/H]?

Combination of exp. "facts" with statistical analyses (SCC, PCC, K-means clustering)

... in the following, focus on Zr, Mo, Ru

Historical papers "p-process"

B²FH (1957) Arnould (1976) Woosley & Howard (1978) Main goal: explanation of nucleosynthetic origin of light p-nuclei, including ⁹²Mo/⁹⁴Mo

Selected subsequent papers / scenarios

Howard // Meyer et al. (1992, **2000**) Hoffman et al. (1996, **2008**) Schatz et al. (1998, 2003) Rauscher et al. (2002) Fisker et al., (2006) Wanajo et al. (2009) Farouqi et al. (2009) Travaglio et al. (2011, **2018**) Eichler et al. (2017) Pignatari et al. (2018) Kratz et al. (2018) Sasaki et al. (2022) n-burst in exploding massive stars ν-driven winds in SN II rp-process in X-ray bursters γ-process in pre-SN and SN νp-process in SN II p-production in EC SN light p, s, r in SN-II at low S p-process in SN Ia nucleosynthesis in ccSN n-burst in He-shell of ccSN light trans-Fe elements in SN-HEW hypernova νp-process The "neutron-burst model"

is the favoured nucleosynthesis scenario of the cosmochemistry community, so far applied to isotopic abundances of Mo, Zr, Te, Xe & Ba

Basis:

```
Howard et al., Meteoritics 27 (1992)
```

"...neutron burst occurs in shocked He-rich matter in an exploding massive star..."

B.S. Meyer et al., ApJ 540 (2000); priv. comm. (2018)

A secondary/ternary model with **several steps**:

- 1) start with S.S. seed composition (already containing p-isotopes);
- 2) during partial He-burning, exposure to a weak n-fluence from ¹³C(α , n) $\Rightarrow \tau = 2 \cdot 10^{24} \text{ cm}^{-2}$ (0.02 mb⁻¹), mimics weak s-processing;
- 3) on these s-ashes (1500 g cm⁻³) run "**n-burst**" with sudden heating to $T_9 \approx 1$; $1 \approx 2^{nd}$ n-source ²²Ne(α , n) activated for 1 s \Rightarrow n_n $\approx 10^{17}$ n·cm⁻³ (0.08 mb⁻¹);
- 4) expansion & cooling on 10 s hydrodynamical timescale.

The n-burst shifts the s-like ashes of (Z, A) to (Z, A+x); e.g. from initial S.S. ⁹²Mo / ⁹⁷Mo \approx **1.5** to final ratio of \approx **1.4** \cdot **10**⁻³

 \bigwedge dilution of p-⁹²Mo and enhancement of (r+s) - ⁹⁷Mo .

Conclusion by authors:

n-burst can explain the "anomalous and quite puzzling" Mo-pattern in SiC X-grains.

Production of the light p-process nuclei in neutrino-driven winds

Hoffman, Woosley, Fuller, Meyer, ApJ 460 (1996)

"normalized production factors" $X_{ej}/X_{\odot} = f(Y_e)$ individual Y_e 's; $S/(N_A k) \approx 50$ "No initial abundances of r- or s-process seed need be invoked \Rightarrow this component of the p-process is primary rather than secondary."

> Result on ⁹²Mo: Underproduction relative to solar

The authors give 3 possible explanations:

The vp-process is active, but ⁹²Mo is primarily produced at other sites
The vp-process is not active, so another explanation is needed
The vp-process is active, but the nuclear parameters (...) are incorrect

Mo isotopic abundances in the S.S.

	Lodders (2009)
⁹² Mo	14.525
⁹⁴ Mo	9.151
⁹² Mo/ ⁹⁴ Mo	1.587

The two most abundant p-nuclei in the S.S.

⁹²Mo/⁹⁴Mo

Particularly "hot topic"

...despite all attempts / scenarios studied up to now,

primary production of ⁹²Mo/⁹⁴Mo has remained an "unsolved problem"

However, note:

S.S. represents a **blend** of various nucleosynthesis processes!

Therefore, it is not the "ideal observable"...

Are there better ones? YES, Mo in SiC-X grains!

Abundances of light trans-Fe ISOTOPES in the ccSN-HEW scenario

Continuing the work of Hoffman, Woosley et al. (1996)...

Farouqi, Kratz & Pfeiffer; **Publications** of the Astron. Soc. of Australia (PASA) 26 (**2009**) "Co-production of light p-, s- and r-process isotopes in the high-entropy wind of type II supernovae"

Typical yields (M_{o}) for $Y_{e} = 0.46$			
⁶⁴ Zn	5.6*10 ⁻⁵	⁷⁸ Kr	4.0*10 ⁻⁸
⁷⁰ Ge	8.9*10 ⁻⁶	⁸⁴ Sr	1.2*10 ⁻⁸
⁷⁴ Se	5.4*10 ⁻⁸	⁹² Mo	2.6*10 ⁻⁸

sizeable abundance yields, comparable to SN Ia of Travaglio et al. (2011, 2015)

Isotopic pairs (nucleosynth.	Isotopic abundance ratios	
origin)	S.S.	HEW
⁶⁴ Zn(p) / ⁷⁰ Zn(r)	78.4	79.4
⁷⁰ Ge(s,p) / ⁷⁶ Ge(r)	2.84	4.61
⁷⁴ Se(p) / ⁷⁶ Se(<mark>s</mark>)	9.4*10 ⁻²	9*10 ⁻²
⁷⁴ Se(p) / ⁸² Se(r)	0.101	0.113
⁷⁸ Kr(p) / ⁸⁶ Kr(r,s)	2.1*10 ⁻²	8*10 ⁻⁴
⁸⁴ Sr(p) / ⁸⁶ Sr(<mark>s</mark>)	5.7*10 ⁻²	4*10 ⁻²
⁹⁰ Sr(s,r) / ⁹⁶ Zr(r,s)	18.4	5.56
⁹² Mo(p) / ⁹⁴ Mo(p)	1.60	1.73
⁹⁶ Ru(p) / ⁹⁸ Ru(p)	2.97	2.57

all historical p-, s- and r-"**only**" isotopes are co-produced, from ⁶⁴Zn to ¹⁰⁴Ru

Types of presolar SiC grains

SiC grains:

- Fourth most abundant and one of the best-studied type of presolar grains
- Further divided into subgroups based on C, N, O & Si isotope ratios
- Most (93%) have C, N, O & Si isotope signatures consistent with TP-AGB stars → mainstream grains
- Just 1% have isotopic signatures consistent with explosive scenarios → Type X grains
- However, the light trans-Fe element composition (e.g. Zr, Mo, Ru) of Type X grains have so far defied a straightforward interpretation.

Pellin et al.: LPS (2006)

Zinner: Treatise on Geochemistry (2004)

Taking Mo as an example, rel. to ⁹⁶Mo: ^{92, 94}Mo depleted

^{95, 97, 98}Mo enriched ¹⁰⁰Mo approx. S.S.

"Clean" signature of ccSN–low-S component?

 δ notation: permill deviation from S.S.

Cosmochemical Mo "three-isotope plots"

Ott, Kratz (2007)

Convention of cosmochemists: "three-isotope plots"

extrapolation of mixing lines with S.S. yields "clean" nucleosynthesis signature

Here, S.S. data point included in mixing-line fits

X-axis: ⁹⁶Mo / ⁹⁷Mo Y-axis: ^XMo / ⁹⁷Mo

To be compared to model predictions: definitely neither classical s nor r !

Kratz et al., AIPC 2076 (2019):

all 7 stable Mo isotopes

^{92,94} Mo	p-only		
^{95,97,98} Mo	r+s		
⁹⁶ Mo	s-only		
¹⁰⁰ Mo	r-only		
are co-produced withi			

are co-produced within the CP component 10 < S < 100; $Y_n/Y_{seed} < 1$

Main production of different Mo isotopes in different S-regions

Note:

- Only the p- ^{92,94}Mo and s- ⁹⁶Mo are completely produced in the CP component
- ¹⁰⁰Mo mainly produced under weak-r conditions; corresponding to more n-rich wind ejecta; main progenitor ¹⁰⁰Sr

Here:

mixing-line fits **without** S.S. datapoint

Mixing-line fits go through S.S. data points exotic nucleosynthesis component with homogenized S.S. stardust Exp. data to be compared to astro-model predictions; e.g. n-burst, ccSN-II, SN-Ia

Comparison of Mo mixing-line results with model predictions

Astro-models:

ccSN-HEW, charged-particle component (CP), Y_n/Y_{seed} < 1
new "n-burst"; T₉ = 1.0

Shaded areas represent uncertainties of experimental mixing-line fits

Plot ⁹⁵Mo/⁹⁷Mo demonstrates most clearly **(N)** "high" Y_e-S combinations can be excluded

Astro-models (new analyses):

- "primary" ccSN, HEW-CP; Y_e = 0.45 0.46; S_{max} = 50 80; Y_n/Y_{seed} < 1
- "secondary" new n-burst; Meyer (2018)

	Isotopic abundance ratios		
×Mo/ ⁹⁷ Mo	SiC X-grains	This work	New "n-burst"
⁹² Mo/ ⁹⁷ Mo	0.15	0.06	1.43 E-3
⁹⁴ Mo/ ⁹⁷ Mo	0.09	0.02	3.28 E-3
⁹⁵ Mo/ ⁹⁷ Mo	1.86	2.96	1.54
⁹⁶ Mo/ ⁹⁷ Mo	0.10	0.02	0.01
⁹⁸ Mo/ ⁹⁷ Mo	0.50	0.66	0.38
¹⁰⁰ Mo/ ⁹⁷ Mo	0.10	0.17	0.10
⁹² Mo/ ⁹⁴ Mo	1.67	1.73	0.44

For ^{95, 96, 98, 100}Mo/⁹⁷Mo, HEW-CP and new n-burst yield similar results.

Not so for ^{92, 94}Mo/⁹⁷Mo and ⁹²Mo/⁹⁴Mo !

"New" cosmochemical three-isotope plots for Zr & Ru

7 stable Ru isotopes:

p-only
r+s
s-only
r-only

all 5 Zr isotopes, and all 7 Ru isotopes are co-produced in our ccSN-CP model with 0.45 < $Y_e < 0.47$; $Y_n/Y_{seed} < 1$

Astro-models (new analyses):

- "primary" ccSN, HEW-CP; $Y_e = 0.45 0.47$; $S_{max} = 50 80$; $Y_n/Y_{seed} < 1$
- "secondary" new n-burst, Meyer (2018)

	Isotopic abundance ratios		
[×] Ru/ ¹⁰¹ Ru	SiC X-grains	This work	New "n-burst"
⁹⁶ Ru/ ¹⁰¹ Ru	1.28	1.09	3.70 E-9
⁹⁸ Ru/ ¹⁰¹ Ru	0.20	0.22	5.72 E-7
⁹⁹ Ru/ ¹⁰¹ Ru	1.33	1.46	0.47
¹⁰⁰ Ru/ ¹⁰¹ Ru	0.15	0.16	1.42 E-3
¹⁰² Ru/ ¹⁰¹ Ru	3.16	3.03	10.2
¹⁰⁴ Ru/ ¹⁰¹ Ru	3.68	2.96	7.41
⁹⁶ Ru/ ⁹⁸ Ru	6.12	4.83	6.47 E-3

As for Mo, our HEW-CP results for Ru agree with measured grain data, whereas the **new n-burst clearly fails**.

Summary

We confirm

- earlier studies of Hoffman et al. \Rightarrow v-driven wind
- Mainz cosmochemistry group \Rightarrow SiC-X mixing-lines

We find

 all historical p-, s- & r-isotopes in the light trans-Fe region (from ⁶⁴Zn to ¹⁰⁴Ru) co-produced in the CP component of a ccSN-HEW

"Best" ccSN-HEW conditions

• CP component 0.45 < Y_e < 0.47 with 10 < S < 100 \Rightarrow Y_n/Y_{seed} < 1

As select examples

- the ccSN-CP scenario can provide a consistent picture for all stable Zr, Mo and Ru isotopes in presolar SiC-X grains
- it can also reproduce the S.S. ratio of $^{92}Mo/^{94}Mo \approx 1.6$

"Clean" signature of low-S ccSN scenario

• from "intercepts" of SiC-X grain mixing lines

Main collaborators

W. Akram, K. Farouqi, O. Hallmann, U. Ott, B. Pfeiffer¹⁷

My Catania summary: From Supernovae to Kilonovae

1993

...site-independent secondary process

r-process components

importance of N = 50, 82, 126, main r-process "bottle-necks"

2006

primary process

SN-II

2

3

today

regular ccSNe

"incomplete" r-process without 3rd peak (e.g. Honda star)

MHD-Jet SNe

", main/strong" r-process (e.g. Sneden / Cayrel stars)

> **NS Mergers** (and Collapsars)

up to 90% Sr & 50% Eu in S.S.-r from SN-types !

RESERVE

Star-dust observables of Zr, Mo and Ru in SiC-X grains

Zr, Mo, Ru in presolar SiC X-grains (sub-micron size) measured with NanoSIMS or RIMS

... ejecta of stars that contributed to the proto-solar nebula; due to SiC's refractory nature, these grains survived S.S. formation; type X-grains are believed to contain isotopic patterns from **presolar** explosive nucleosynthesis events.

Remember:

Mo of particular interest: 7 stable isotopes with ^{92,94}Mo "p-only" ⁹⁶Mo "s-only" ^{95,97,98}Mo s+r ¹⁰⁰Mo "r-only"

Marhas, Ott & Hoppe, MPS 42 (2007)

Among suggested nucleosynthesis scenarios:

- "n-burst" in shocked He shell in SNe
- rp-process in X-ray bursters
- p-process in SN-la or EC-SN
- v-driven wind in cc-SN-II

Question:

can the low-S CP-r component of the HEW r-process produce all 7 Mo isotopes at the same time?

"New" Zr isotopic abundances in ccSN-HEW

 $Y_e = 0.45$ 10^{-3} New analysis (2018): 10^{-5} Abundance, Y(Z) all 5 stable Zr isotopes ⁹⁰Zr s+r (+p?) 10^{-7} ^{91,92,94}Zr s+r ⁹⁶Zr r+s 10⁻⁹ are co-produced within the CP component 10 < S < 100; 10-11 $Y_n/Y_{seed} < 1$

10⁻¹³

50

100

Main production of all 5 Zr (Z=40) isotopes within the CP component, in contrast to Mo (Z=42) and Ru (Z=44)

150

Entropy, S (k_B / baryon)

200

250

⁹⁰Zr ⁹¹Zr

⁹²Zr ⁹⁴Zr

⁹⁶Zr

– Zr

"New" Ru isotopic abundances in ccSN-HEW

Note:

¹⁰⁰Ru

¹⁰¹Ru

¹⁰²Ru

¹⁰⁴Ru

0

Charged Particle

50

Weak r-

150

Entropy, S (k_B / baryon)

100

Main r-

250

300

200

- only the 2 p-isotopes are completely produced in the CP component
- all heavier isotopes are mainly formed under weak-r (or ¹⁰⁰Ru, even under main-r) conditions