

Measurement of the ¹⁴⁰Ce(n,y) cross section at n_TOF

Stellar nucleosynthesis

The heavy elements (Z>26) are produced mostly via neutron captures followed by beta decays.

s-process

- Mainly AGB stars
- Capture times >> Decay times
- $N_n = 10^8 \text{ n/cm}^3$ kT = 0.3-300 keV
- Near the valley of stability

r-process

- Explosive environments
- Capture times << Decay times
- N_n = 10²⁰⁻³⁰ n/cm³ kT > 100 keV

NFN

• Far from stability

Why Cerium?

Cerium is mostly produced via **s-process**, the final abundance of ¹⁴⁰Ce (89% of natural cerium) predicted by stellar models strongly depends on its destruction channel ¹⁴⁰Ce(n,γ).

Small cross section (magic number of neutrons), the MACS (Maxwellian average cross section) is determined by resonances in keV region.

O. Straniero, S. Cristallo, L. Piersanti APJ 785 (2015) 77

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

n_TOF facility

n_TOF facility has the **high instantaneous neutron flux**, the **wide energy range** and the **high energy resolution** (up to 10⁻⁴) and low background needed for this accurate measurement.

For more details see talk from Cristian Massimi "Nuclear astrophysics activities at the n_TOF facility at CERN".

Experimental setup for ¹⁴⁰Ce(n,y)

Liquid scintillator detectors containing C_6D_6 used to measure (n,y) reaction cross sections.

Low neutron sensitivity and background thanks to the carbon fiber structure.

The neutron energy is measured with Time of Flight technique with a **energy resolution of 10**⁻⁴.

¹⁴⁰Ce Sample

Sample made of CeO_2 powder, enriched in ¹⁴⁰Ce (99.4%), total ¹⁴⁰Ce mass ~ 10 grams.

First capture measurement with a combination of high purity sample and high energy resolution.

ISOTOPIC CONTENT

ISOTOPE	136	138	140	142
CONTENT (%)			99.4	0.6

89% and 11% natural

The quantity we want to extract from a capture measurement is the experimental Yield, defined as:
Background

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

The quantity we want to extract from a capture measurement is the experimental Yield, defined as:

Dedicated beam time with dummy samples to evaluate background

The quantity we want to extract from a capture measurement is the experimental Yield, defined as:
Background

M. Barbagallo et al., "High-accuracy determination of the neutron flux at n TOF" Eur. Phys. J. A (2013) 49: 156

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

The quantity we want to extract from a capture measurement is the experimental Yield, defined as:
Background

Efficiency to detect a cascade following the neutron capture, determined by the "Pulse Height Weight Technique"

$$\varepsilon_{\gamma} = \alpha E_{\gamma}$$
 $\varepsilon_{(n,\gamma)} = \sum_{j} \varepsilon_{\gamma_{j}} = \alpha E_{(n,\gamma)}$

The quantity we want to extract from a capture measurement is the experimental Yield, defined as: Background

Geometrical factors including the Beam Interception Factor

Cerium data are **normalized to** ¹⁹⁷Au(n,y) in the "saturated resonance" and corrected by the different total energy of the two cascades.

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

Gold yield

The gold sample allow as well to check the experimental data, in particular in the keV energy region where the resonance of ¹⁴⁰Ce are located. A good agreement between n_TOF and nuclear libraries is observed.

Resonances analysis

The resonance analysis has been performed with SAMMY **up to 65 keV**, using JENDL4.0 as reference library. The **two reaction width** (capture and scattering) are fitted at the same time, **together with the resonance energy**.

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

Resonances analysis

The resonance analysis has been performed with SAMMY **up to 65 keV**, using JENDL4.0 as reference library. The **two reaction width** (capture and scattering) are fitted at the same time, **together with the resonance energy**.

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

Resonances analysis

We **included in the analysis a transmission measurement** performed at GELINA in 2016 by Guber et al. with a natural sample (89% of ¹⁴⁰Ce). The combined fit provided a better estimation for the Γ_n of large resonances.

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

Wrong spin/parity in s-wave

Further looking to the transmission data with the thick target, we noticed that **3 of the 16 fitted s-waves are clearly p-waves**:

Clearly the reduction of s-wave number impacts the relative spacing.

Wrong spin/parity in s-wave

Further looking to the transmission data with the thick target, we noticed that **3 of the 16 fitted s-waves are clearly p-waves**:

The 3 resonance have been **fitted with the new spin** combining transmission&capture data.

Kernel ratio vs JENDL Energy

The kernel ratio n_TOF/JENDL is systematically larger than 1, for E_n<30 keV

Kernel n_TOF / Kernel JENDL 2.2 s-wave p-wave 1.8 not fitted 1.6 1.4 1.2 0.8 0.6 0.4 0.2

30000

40000

Kernel Ratio vs JENDL Energy

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

20000

10000

0 Ò

60000

JENDL Energy (ev)

50000

MACS

The n_TOF MACS has been calculated combining the n_TOF data and JENDL-4.0 library (for the energy region that was not possible to measure).

The n_TOF+JENDL-4.0 MACS is **higher than KADoNiS at low temperature** (contrary to what expected) but a **reasonable agreement is observed at 30 keV.**

19

INFN

Contribution to the MACS

At the temperature of interest the MACS is determined almost entirely by the resonances **below 65 keV** (80% of the resonances has been fitted in this interval, the one with higher kernel thus providing the higher contribution).

Astrophysical impact

The impact has been evaluated calculating the **difference in the isotopic abundances** predicted by the stellar model with the new MACS with respect to the previous values.

The new values for the ¹⁴⁰Ce abundance are ~20% lower to the previous ones, in the opposite direction with respect to what originally expected from the observations.

An impact on the heavier nuclei is observed as well, since the ¹⁴⁰Ce acts as a bottleneck of the s-process an increase of his MACS make easier to overcome it.

Conclusions

An accurate measurement of ¹⁴⁰Ce(n,y) cross section has been successfully performed at n_{TOF} , the resonance analysis has been carried out up to 65 keV and the parameters of s and p waves has been estimated.

The MACS calculated on the basis of the new parameters and JENDL library is in **good agreement with KADoNiS at 30 keV** (essentially the activation measurement by Käppeler et al.) while it is **higher at lower temperatures**.

As it reasonable, the ¹⁴⁰Ce produced by the main component of s-process decreases causing an higher discrepancy with observations.

The easiness of overcoming ¹⁴⁰Ce bottleneck changes the neutrons available and influences the abundances of a large part of heavier elements.

Simone Amaducci – 13th Torino Workkshop - 13-18 June 2022

Normalization

Normalization constant computed fitting the gold yield between 4.7 and 5.1 eV

C = 0.7127 +- 0.0014 The value has been corrected for the sample diameter (19.5 mm vs the 20 mm of the gold sample).

Pulse Height Weight Technique

It is used to simplify the analysis **removing the dependence on the cascade decay path**. It requires the use of low efficiency γ detectors with efficiency proportional to the gamma energy. If is met the condition:

$$\varepsilon_{\gamma} = \alpha E_{\gamma}$$

the efficiency for detecting a neutron capture is proportional to the known cascade energy:

$$\varepsilon_{(n, \gamma)} = \sum_{j} \varepsilon_{\gamma_{j}} = \alpha E_{(n, \gamma)}$$

In our case the direct proportionality is obtained weighting the counts with a function computed via Monte Carlo simulation in GEANT4.

25