

Light- and Heavy-element Isotopic Compositions of Presolar Silicon Carbide Grains from AGB Stars

Nan Liu*, Conel Alexander, Maurizio Busso Andrew Davis, Sergio Cristallo, Larry Nittler Sara Palmerini, Thomas Stephan, and Diego Vescovi

Outline

Light-element Isotopes (C, N, Si, Mg-Al) Heavy-element Isotopes

Dust Formation in Low-mass AGB Stars

Presolar Grain Analysis in Laboratory

CHILI (Chicago Instrument for Laser Ionization)

Stephan et al. (2016) IJMS

Classification of Presolar SiC Grains

MS, Y, and Z Grains from AGB Stars

²⁹Si/²⁸Si: a proxy of stellar metallicity
→Y and Z grains from lower metallicity stars than MS grains

³⁰Si/²⁸Si: a proxy of s-process efficiency
→s-process efficiency follows the order of Z > Y > MS

 Iower metallicity stars: lower sprocess seeds and higher T_{max}
→ increasing s-process efficiency with decreasing metallicity

Why Such A Wide Range of ¹⁴N/¹⁵N Ratios?

MS/Z and Y: Different ^{12/13}C ratios MS, Y, and Z : Different Si isotope ratios MS, Y, and Z: Similar ¹⁴N/¹⁵N ratios?

Why Such A Wide Range of ¹⁴N/¹⁵N Ratios?

Suppressing N Contamination

¹⁴N/¹⁵N Affected by Stellar Mass and Metallicity

- ¹⁴N/¹⁵N: increases with increasing stellar mass
- ¹²C/¹³C: increases with increasing stellar mass and decreasing stellar metallicity

MS, Y, and Z: Different ¹⁴N/¹⁵N ratios?

- ¹⁴N/¹⁵N: increases with increasing stellar mass
- ¹²C/¹³C: increases with increasing stellar mass and decreasing stellar metallicity
- Higher ¹⁴N/¹⁵N in Z grains: higher stellar mass?
- Effects of extra mixing on ¹²C/¹³C and ¹⁴N/¹⁵N?

²⁶Al/²⁷Al in AGB SiC Grains

- Nonmagnetic FRUITY models predict $({}^{26}AI/{}^{27}AI)_0$ of $(2-4) \times 10^{-3}$ for C-rich phase
- The model results can be reduced by increasing the ${}^{26}Al_g(p,\gamma){}^{27}Si$ rate

Outline

 Light-element Isotopes (C, N, Si, Mg-AI)
Heavy-element Isotopes (Sr, Mo, Ba)

MS, Y, and Z Grains: Sr and Ba isotopes

Magnetic FRUITY AGB Models

FRANEC Torino AGB Models

FRANEC Torino AGB Models

Grains versus Models

Magnetic FRUITY AGB Models **Problem:** cannot reproduce the large ³⁰Si excesses in Y and Z grains

FRANEC Torino AGB Models **Problem**: Why parent stars of Y and Z grains had such low amounts of ¹³C?

Y and Z Grains: SiC from low-metallicity AGB stars?

Conclusions

- MS, Y and Z grains show systematic differences in C, Si, Ti, Sr, Ba isotope ratios
- The large ³⁰Si, ⁵⁰Ti, ⁸⁸Sr, and ¹³⁸Ba enrichments observed in Y and Z grains are in line with signatures expected for low metallicity AGB stars, but AGB models cannot quantitatively explain the grain data
- MS, Y, and Z grains show similar N, Mg-Al, and Mo isotope ratios, and the similar N and Mg-Al isotope data may have been caused by contamination and need further investigation
- The new NanoSIMS analytical approach is needed to obtain more N and Mg-Al isotope data for Y and Z grains
- That the Mo isotopic pattern varies with varying metallicity is caused by the MACS values of Mo isotopes deviating from 1/v_{th}, and better cross-section measurements are needed to test whether this is true.