THE 13TH TORINO WORKSHOP ON AGB STARS PERVGIA, 19TH-24TH JUNE 2022

Barium stars as tracers of s-process nucleosynthesis in AGB stars

Borbála Cseh Konkoly Observatory, Budapest, Hungary cseh.borbala@csfk.org

Ba stars

- peculiar G–K spectral type, [Fe/H] > –1 dex
- not yet evolved to the AGB phase
- strong spectral features: carbon molecular bands + s-process elements (e.g. Ba)
 → synthetised inside AGB stars
- RV variation (McClure+ 1983, ...), UV excess (Böhm-Vitense+ 2000, ...)

Ba stars

- RV variation → binary systems, now WD companion
- pollution from a former AGB companion → mass transfer
- origin of overabundance: extrinsic!
- test: AGB s-process nucleosynthesis

s-process

- s process: during TP-AGB phase
- peaks at Sr (1. peak), Ba (2. peak), Pb (3. peak)
- how to measure s-process efficiency?

 → ratio of heavy (2. peak) and light (1. peak) s
 elements: [hs/ls] → ratio: elimination of dilution effects
 → s=? hs=? ls=?
- Is: Sr, Y, Zr
 hs: Ba, La, Ce, Nd

sample stars

- de Castro+ (2016):
 - 182 giant Ba stars (certain, candidate)
 - high resolution spectra (FEROS, R = 48000)
 - wide range in $T_{\rm eff}$ (4100–5400 K), metallicity
- Ba star: if [s/Fe] ≥ 0.25 dex (s = La, Ce, Nd, Y, Zr)
 → 13 stars rejected → 169 stars left
- average [hs/ls], estimated error \rightarrow separate elements + errors [hs/ls] \rightarrow [Ce/Y], ...

AGB models

• final surface abundances, [s/Fe] ≥ 0.25 dex

Monash

 wide range of metallicities, masses, different ¹³C pocket size: to produce s-process elements

Cristallo+ 2016, Cristallo+ 2015, Straniero+ 2014, Piersanti+ 2013, Cristallo+ 2011, Cristallo+ 2009

FRUITY

+

Karakas+ 2018, Karakas & Lugaro 2016, Fishlock+ 2013, Lugaro+ 2012

+

Pignatari+ 2016, Battino+ 2016

NuGrid

model comparison

models in agreement with the data trends

(Cseh+ 2018)

La issue...

...except from La
 → too strong lines
 → overestimated
 values

...solved!

new La values (improved atomic data + hfs included) + new elemental abundances: Rb, Sr, Nb, Mo, Ru, Sm, Eu (Roriz+ 2021a,b)

- 28 stars from the large sample (de Castro+ 2016)
 → orbits + masses (Ba + AGB_{ini}) (Jorissen+ 2019)
- spanning the whole [Fe/H] and [Ce/Y] range

- all giants (with convective envelope)
 - \rightarrow AGB mass carried to the secondary and mixed \rightarrow model comparison with dilution (δ)
- δ : to match [Ce/Fe], limit: δ < 0.9 (< 90% of the AGB envelope carried to the Ba star's surface)
- models:
 - different ¹³C pockets
 - metallicity range: Ba star's [Fe/H] +/- err

3 main groups:

1: in agreement with the models (abundance + mass) \rightarrow subgroups depending on overabundance

group 1a: all OK

(Cseh+ 2022)

(Cseh+ 2022)

group 1c: OK, high Nb,Mo,Ru,Nd,Sm

3 main groups:

1: in agreement with the models (abundance + mass) → subgroups depending on overabundance 2: low estimated mass (< 2 M_{Sun}) + high first peak

group 2: low mass

(Cseh+ 2022)

3 main groups:

 in agreement with the models (abundance + mass) → subgroups depending on overabundance
 low estimated mass (< 2 M_{Sun}) + high first peak
 higher initial AGB mass (> 3.8 M_{Sun})

(Cseh+ 2022)

group 3: high estimated mass \rightarrow 1b

• out of 28 stars:

- good match with 25 stars (some with higher independently derived AGB_{ini} masses)

 \rightarrow 16 stars with higher Nb, Mo, Ru and/or Nd, Sm - 3 with higher first s-process peak, low mass AGB_{ini} (< 2 M_{Sun}): these models cannot reproduce it!

• out of 28 stars:

- good match with 25 stars (some with higher independently derived AGB_{ini} masses)

 \rightarrow 16 stars with higher Nb, Mo, Ru and/or Nd, Sm

- 3 with higher first s-process peak, low mass AGB_{ini}
- (< 2 M_{Sun}): these models cannot reproduce it!
 - \rightarrow different neutron density?
 - \rightarrow a new process of nucleosynthesis?

P - e - δ

shorter P \sim \rightarrow higher δ \rightarrow higher mass transfer efficiency

eccentricity

conclusions

- Ba star polluters: low mass AGBs (~2–3 M_{Sun}, with ¹³C as main neutron source)
- good match with 25 stars, 3 with higher first peak
- higher mass transfer efficiency... \rightarrow disk structure?
- whole sample with the same abundance pattern: with machine learning techniques (see next talk; den Hartogh+ subm., Világos+ in prep.)
- include also other model sets

conclusions

- Ba star polluters: low mass AGBs (~2–3 M_{Sun}, with ¹³C as main neutron source)
- good match with 25 stars, 3 with higher first peak
- higher mass transfer efficiency... \rightarrow disk structure?
- whole sample with the same abundance pattern: with machine learning techniques (see next talk; den Hartogh+ subm., Világos+ in prep.)
- include also other model sets

Thank you for your attention!

