Post-AGB stars as probe for dust production and mass-loss mechanisms

MACQUARIE University

Silvia Tosi

Flavia Dell'Agli, Devika Kamath, Paolo Ventura, Hans Van Winckel & Ester Marini

Summary

- Why study post-AGB stars?
- Characteristics of the sample
- Methodology
- Discussion focus on:
 ➢ Intermediate mass carbon stars
 ➢ low mass carbon stars
 ➢ oxygen rich stars

Why study post-AGB stars?

1) Their chemical composition represents the final outcome of the AGB evolution and associated internal enrichment processes

2) Post-AGB stars provide the unique opportunity to obtain chemical abundances of a wide range of elements: CNO, Fe-peak, *s*-process elements and also obtain isotopic ratios of C, N and O

Characterization of the post-AGB sample

.

Starting point:

(Kamath et al. 2014, 2015)

- Effective temperature
- Metallicity

DUSTY code Nenkova et al. (1999)

From SED fitting we can derive:

- Dust properties:
 - 1. Mineralogy
 - 2. Optical depth (τ_{10})
 - 3. Dust temperature
 - 4. $(T_d \rightarrow R_{in})$
- Luminosity → Progenitors' mass

.

Starting point:

(Kamath et al. 2014, 2015)

- Effective temperature
- Metallicity

DUSTY code Nenkova et al. (1999)

From SED fitting we can derive:

- Dust properties:
 - 1. Mineralogy
 - 2. Optical depth (τ_{10})
 - 3. Dust temperature
 - 4. $(T_d \rightarrow R_{in})$
- Luminosity → Progenitors' mass

.

Starting point:

(Kamath et al. 2014, 2015)

- Effective temperature
- Metallicity

DUSTY code Nenkova et al. (1999)

From SED fitting we can derive:

- Dust properties:
 - 1. Mineralogy
 - 2. Optical depth (τ_{10})
 - 3. Dust temperature
 - 4. $(T_d \rightarrow R_{in})$
- Luminosity → Progenitors' mass

Progenitors' mass determination

22/06/22, 13th Torino Workshop

* Evolutionary tracks from ATON Ventura et al. (1998)

Dust properties

The methodology

Carbon star:
$$\dot{M} = \dot{M}^{Tip} \times \left(T_{eff}/T_{eff}^{Tip-AGB}\right)^{-1}$$

The methodology

Carbon star:
$$\dot{M} = \dot{M}^{Tip} \times \left(T_{eff}/T_{eff}^{Tip-AGB}\right)^{-6}$$

The methodology

Carbon star:
$$\dot{M} = \dot{M}^{Tip} \times \left(T_{eff}/T_{eff}^{Tip-AGB}\right)^{-1}$$

Carbon stars

1.
$$\dot{M} \propto T_{eff}^{-\alpha}$$
 with $\alpha = 2 - 3$

2. The dust that we see now was released when $T_{eff} = 3500 - 4000K$.

3.
$$\dot{M}^{Tip-AGB} \sim 10^{-4} M_{\odot}/yr$$

 $\tau_{10} \rightarrow$ Large surface carbon abundances $R_{in} \rightarrow$ Short contraction times

$$\dot{M} \propto T_{eff}^{-\alpha}$$
 with $\alpha = 2 - 3$

The dust that we see now was not released when $T_{eff} = 3500 - 4000K$ $\dot{M}^{Tip-AGB} \sim 10^{-5} M_{\odot}/yr$ $\dot{M}^{Tip-AGB} \sim 3 - 4 \times 10^{-5} M_{\odot}/yr$

Oxygen stars

The standard mass loss relation used for the oxygen rich AGB stars (Blöcker 1995)

The dust that we see now was not released when $T_{eff} = 3500 - 4000K$

 $\dot{M}^{Tip-AGB} \sim 10^{-6} M_{\odot}/yr$

 $R_{in} \rightarrow$ Extinction coefficients of silicates are lower than those of carbon dust

Conclusions.

- The dust currently surrounding post-AGB stars was not released at the Tip-AGB but in a **later stage**, when $T_{eff} = 3500 4000K$;
- For **oxygen** rich stars we confirm the standard relation used during the AGB phase and also the mass loss rate at the Tip;
- For carbon stars the mass loss declines after the Tip with a slope softer dependent on the effective temperature than expected from the standard stellar evolution modelling;
- For low-mass carbon stars a correction of the mass loss rate at the tip of the AGB phase of a factor ~ 3 – 4 is required.

Future prospectives

- Galaxy sample (from Kamath et al. 2022)
- Binary systems

Thank you!