Massive-Star Groups: Nucleosynthesis and Feedback

Roland Diehl

Max Planck Institut für extraterrestrische Physik Technical University Munich Excellence Cluster "Origins" Garching, Germany

Beihang University, Beijing, China

γ-ray Observations and their

Interpretation

with work from Martin Krause, Karsten Kretschmer, Moritz Pleintinger, Thomas Siegert and others

Contents:

- 1. Insights from ²⁶Al gamma ray studies with INTEGRAL/SPI
- 2. The role of massive-star groups for ²⁶Al in the Galaxy
- 3. Population synthesis and a bottom-up description of the ²⁶Al in the Galaxy

²⁶Al Sources: Hints from Presolar Grains

Torino Workshop & Maurizio Buss's 70th, Perugia (I), Jun 19-24, 2022

γ -rays as a global Galactic tracer of ²⁶Al nucleosynthesis

Improved Sensitivity: New ²⁶Al all-sky spectrum

Torino Workshop & Maurizio Buss's 70th, Perugia (I), Jun 19-24, 2022

5

New ²⁶Al all-sky spectrum

^{26}Al results from SE and DE: >58 σ

Pleintinger 2020; Diehl+2022

Radio-Isotopes with ~My lifetimes: ²⁶Al , ⁶⁰Fe

Torino Workshop & Maurizio Buss's 70th, Perugia (I), Jun 19-24, 2022

²⁶Al image and spectra along the plane of the Galaxy → regions characterised by massive-star groups

Torino Workshop & Maurizio Buss's 70th, Perugia (I), Jun 19-24, 2022

Massive-star and ²⁶Al radioactivity locations

Torino Workshop & Maurizio Buss's 70^m, Perugia (I), Jun 19-24, 2022

Roland Diehl

Modelling a Massive-Star Group

Z = 0.00= 0.02Implement Known Massive-Star Properties H-hurning Stellar Evolution Phases and their Durations ☆ Characteristic Emissions in Radiation, Winds, new Nuclei log(M/M_o) Sample a Group of Stars \rightarrow Assemble Group Properties Fxnlosive ☆ Time Profiles of Characteristic Emissions ☆ Statistical Variations Voss et al. 2009 ²⁶Al [Msol/star] similar to Leitherer's STARBURST99, 2×10 yet enhanced with nucleosynthesis ejecta 0 20 10 30

Time [Myr]

Nucleosynthesis in massive stars: ⁶⁰Fe, ²⁶Al

→ Two Messengers from Massive-Star Interiors with Different Origin!

ratio \rightarrow cancel source distance knowledge

Processes:

Hydrostatic fusion WR wind release Late Shell burning Explosive fusion Explosive release Charged-particle fusion Neutron capture ²⁶Al Nucleosynthesis: Example of a Cosmic Reaction Network, Common for Intermediate-Mass Isotopes

Yields in ²⁶Al from massive-star models (wind & SN)

- about factor 5-10 differences among different model types/variants
- stars with M<35 M_{\odot} dominate (when weighted with IMF)

Massive-Star Groups

Voss R., et al., 2009 Dower É_{kin} og(dE/dt) [erg/s] We study the "outputs" Full range 80-120 Mso 40-80 Msol of massive stars and their 20-40 Msol 8-20 Msol supernovae ²⁶AI [Msol] Ejecta (²⁶AI) Winds and Explosions 5×10 – Nucleosynthesis Ejecta Ionizing Radiation Ejecta (⁶⁰Fe) ⁵⁰Fe [Msol] 10 5×10⁻⁶ We get observational constraints from 20 **Star Counts** JV [log(photons/s)] ionizing **ISM Cavities** light **Free-Electron Emission** 10 **Radioactive Ejecta** 5 10 20 0 Time [Myr time (My)

Population synthesis: impact of different inputs on groups

contributions from early (i.e. most-massive-star) SNe reduced

Torino Workshop & Maurizio Buss's 70th, Perugia (I), Jun 19-24, 2022

14

Population synthesis: impact of different inputs

Testing our Models: Cygnus at its Specific Age and Metallicity

- to Cygnus Region
 - Models for Solar Metallicity ~OK
 - If Lower Metallicity: Underprediction?

Martin+ 2010

Torino Workshop & Maurizio Buss's 70th, Perugia (I), Jun 19-24, 2022

The Sco-Cen Association: Triggered Star Formation?

Nearest OB Association (~120pc)

- subgroups of ages 5, 16, 17 My
- Extended, Triggered Star Formation?

Observed ²⁶Al Emission \mathbf{A}

 \mathbf{A}

- **Stellar Groups Ages & Richness** \mathbf{x}
- **ISM Shell/Cavity Observables** $\overrightarrow{}$

²⁶Al γ-rays trace kinematics at galactic scale

[©] Large-scale Galactic rotation

The longitude-velocity diagrams: ²⁶Al shows a new aspect

excess velocity ~200 km s⁻¹ wrt CO gas and masers seen for massive-star ejecta!

Kretschmer et al., A&A (2013)

How massive-star ejecta are spread out...

²⁶Al trajectories in simulations

3D hydrodynamical simulations on kpc scales have become feasible (with sufficient resolution to trace nucleosynthesis events):

- ☆ 128³ cells, cell size 7.8 pc (more-precise than cosmological simulations, but still crude)
- starting fom 'current galaxy' model (Tasker&Tan 2009), no bulge nor spiral arms initially
- star formation by Toomre criterion on single cells, efficiency set tp 1%
- \rightarrow 'map' of a simulated galaxy in radioactive ²⁶Al (and ⁶⁰Fe)

Comparing Observations with Simulations

Biases on both ends:

- A Simulations adopt an idealised Galaxy from a general viewpoint
- A Observations are from the Solar-system viewpoint, nearby environment may be special

Use projections that eliminate those biases and focus on general characteristics of the large-scale ISM

 \rightarrow the differences are significant: larger 'chimneys' in observations

Pleintinger+ 2019

Ejecta and cavities blown by stars & supernovae

ISM is driven by stars and supernovae \rightarrow Ejecta commonly in (super-)bubbles

23

here: the Orion region with the Eridanus cavity

3D MHD sim, 0.1..0.005 pc resolution *Krause+ 2013ff*

Torino Workshop & Maurizio Buss's 70th, Perugia (I), Jun 19-24, 2022

Stellar feedback in the Sco-Cen region (d~140 pc)

The stellar population covers a wide age range no clear coeval subgroups, rather SF ongoing for ~15+ My

3/4 keV (R45)

The interstellar medium holds a network of cavities

ISM dynamics is not easy to unravel

²⁶Al _(t~1My) appears widely spread; can we measure the flow?

→ "surround & squish" M. Krause+ A&A (2018) rather than "triggered" star formation

Roland Diehl

Locations of Massive-Star Groups

Torino Workshop & Maurizio Buss's 70th, Perugia (I), Jun 19-24, 2022

Roland Diehl

Pleintinger 2020;

Diffuse radioactivity throughout the Galaxy

Galactic Population Synthesis Modelling versus observations

Pleintinger 2020 Diehl+ 2022 Siegert+ 2022

 ✓ observed full sky flux: (1.84 ±0.03) 10⁻³ ph cm⁻² s⁻¹;
→ model-predicted ²⁶Al ~ too low
✓ up-scaling with star formation rate
→ values plausibly too high
✓ additional forground emission? (a young superbubble having engulfed us)?
✓ contributions from AGB stars (>50 My)?

The local (super-)bubble

Torino Workshop & Maurizio Buss's.

_h

Massive-Star Groups - Summary

☆ INTEGRAL/SPI provides detailed observations of Galactic ²⁶AI ~20 yrs of exposure, all SPI triggers used \rightarrow 58 σ signal, all-sky flux 1.8 10⁻³ ph cm⁻² s⁻¹ Galactic ²⁶Al mass estimate (geometrical models): 1.2-2.4 M_O $^{\odot}$ ²⁶Al velocities larger than expected \rightarrow sources create superbubbles \rightarrow ²⁶Al ingestions into pre-blown cavities ☆ Population synthesis of massive-star groups as a tool ⁽³⁷⁾ 'PSYCO' predicts ²⁶Al ejection history over ~30 My \bigcirc Inclusion of Galactic source distribution \rightarrow bottom-up map Comparison between observations and population synthesis and simulations \rightarrow massive-star group scenario plausible ^{CP} discrepancies in detail: observed cavities larger, observed flux larger

☆ Varied messengers complement each other

- ^C Radioactivity provides a unique and different view on ejecta diffusion (→ recycling)
- A next gamma-ray telescope (light-weight Compton telescope) is a dream 2040+; COSI-SMEX 2026?; INTEGRAL will end 2029

