Neutron capture and total cross measurements on ^{94,95,96}Mo at n_TOF and GELINA

RICCARDO MUCCIOLA

Importance of molybdenum

- Fission product in nuclear power plants;
- Nucleosynthesis of heavy elements: pollution in presolar SiC grains;
- Transport casks, irradiated fuel storage;
- Research reactors and Accident Tolerant Fuels.

Presolar grain composition

- Comparison of SiC grains composition versus stellar model (FRUITY Torino model)
- MACS form KADoNiS v1.0
- Slight discrepancy between model and isotopic composition
- Possible overestimation of MACS in KADoNiS.

N. Liu, et al., ApJ 881 (2019) 28.

SANDA project

SANDA WP2:

Task 2.2: Neutron capture cross sections

Subtask 2.2.1. Capture measurements of fissile isotopes Combined measurement of the ²³⁹Pu(n,γ) and ²³⁹Pu(n,f) cross sections at GELINA and n_TOF.

Subtask 2.2.2. Capture measurement of stable isotopes ^{92,94,95}Mo(n,γ) cross sections at GELINA and n_TOF.

Objective of experiments

Improve capture cross section accuracy for neutron energies from thermal (10 meV) to hundreds keV Submit results to EXFOR to improve nuclear data libraires (ENDF, JEFF, JENDL ecc.)

Experimental campaigns

Transmission measurement

- Carried out at GELINA
- Total cross section measurement
- Natural and enriched samples
- 10m and 50m flight path

Radiative capture measurement

- Carried out at GELINA and n_TOF
- Neutron capture cross section
- Both experimental areas of n_TOF
- 10m station of GELINA

Facilities and technique

GELINA

- Located at JRC-Geel
- Multi-user time-of-flight facility
- Electron beam produced by LINAC (E = 140 MeV)
- Rotating uranium target
- Production of neutrons via (γ,n) or (γ,f)
- Pulsed neutron source (10 meV < E < 20 MeV)
- Water moderators

n_TOF

- Located at CERN
- Neutron beam produced using PS proton on lead target
- Production of neutrons via spallation
- Pulsed neutron source (10 meV < E < 1 GeV)
- Three experimental areas (EAR1, EAR2 and NEAR)

Time-of-flight technique

Experimental measurements

Transmission

Radiative capture (capture yield)

Percentage of neutrons that traverses a samples without interacting with it

• Related to total cross section:

Percentage of neutrons that undergoes capture reaction in the sample

• Related to capture cross section via:

$$T = \mathrm{N} \frac{C_{in}(t) - KB_{in}(t)}{C_{out}(t) - KB_{out}(t)} = \frac{\varphi_n e^{-n\sigma_{tot}}}{\varphi_n} = e^{-n\sigma_{tot}}$$

$$Y_{exp} = N \frac{C_{\gamma}(t) - B_{\gamma}(t)}{C_{\varphi}(t) - B_{\varphi}(t)} Y_{\varphi} = (1 - T) \frac{e^{-n\sigma_{\gamma}}}{e^{-n\sigma_{tot}}}$$

Resonance Shape Analysis

- Determination of the resonance parameter E_0 , Γ_{γ} , Γ_n
- Simultaneous fit of transmission and capture data
- Fit performed using R-Matrix formalism

Parametrization of cross section using resonance parameters

Resonance parameters evaluation

Cross section uncertainties in ENDF/B-VIII

Capture cross section uncertainties - ENDF/B-VIII.0 data set

RICCARDO MUCCIOLA - ENEA

Improved RP for ^{94,95,96,nat}Mo

- Study transmission and capture data for Mo reported in the literature:
 > compilation of resonance parameters based on these data
- Transmission cross section measurements using ^{nat}Mo samples at 50m GELINA:
 > adjust the compiled resonance parameter file by RSA with REFIT
- 3) Experiments with enriched ^{94,95,96}Mo samples:
 - > Transmission and capture measurements at GELINA
 - Capture measurements at n_TOF
- Final resonance parameter file by a simultaneous analysis of GELINA and n_TOF data

Mo literature study

Transmission			Capture			
Wang	^{nat} Mo	POHANG (<200 eV)	Weigmann	^{nat} Mo	GELINA (<25 keV)	
Pevzner	92,94,95,96,97,98,100 Mo	DUBNA (<10 keV)	Weigmann	^{92,94,95,96,97,98,100} Mo	GELINA (<5 keV)	
Wynchank	^{nat} Mo	Columbia Univ. (<5 keV)	Musgrove	^{92,94,95,96,97,98,100} Mo	ORELA (>3keV)	
Shwe	^{95,97} Mo, ^{nat} Mo	Argonne (<1.5 keV)	Wasson	⁹² Mo	ORELA (<30 keV)	
Chrien	⁹⁸ Mo	ORELA (<50 keV)				
Babich	⁹⁸ Mo	90m chopper (<2.5 keV)				
Leinweber	^{nat} Mo	RPI (<2 keV)				
Wasson	⁹² Mo	ORELA (<30 keV)				
Weigmann	¹⁰⁰ Mo	ORELA (<4keV)				

Mo literature comparison

RP compilation from literature

- Define consistent energy scale: Weigmann et al. (capture experiments at GELINA)
- 2) Select $g\Gamma_n$ reference:
 - E < 2keV: Leinweber
 - E > 2keV: Whynchank
- 3) Select $\frac{g\Gamma_{\gamma}\Gamma_{n}}{\Gamma}$ reference:

Weigmann

Musgrove for odd isotopes and E>3keV

Compilation of RP file from literature data

> ^{nat}Mo transmission measurements at GELINA to validate and improve RP file

Validation of compiled RP file

- RP file verified by transmission data (50 m) of 2mm and 5mm thick ^{nat}Mo samples
- Missing resonances in libraries reported in literature data
- Literature parameters more consistent with transmission data
- New RP file improve data description.

- RP file improved by an adjustment to transmission data using REFIT
- Fit of resonances up to 5 keV
- Final paper ready for submission

Dissemination of results

- Results of resonance parameters compilation submitted for publication
- EXFOR submission under preparation
- Collaboration with additional experiment performed in another facility

Evaluated data file will be proposed for new version of JEFF!

Enriched samples campaign

Mo powder @ n_TOF

- Metallic powder in metallic capsules;
- Capsule fixed to mylar disk using Kapton foil;
- 2g of powder available for each isotope;
- Capture measurements performed at n_TOF in October 2021.

Energy

24

Energy spectra

Enriched pellets preparation

- Pressed pellets prepared using enriched powder
- Pellets prepared at JRC-Geel
- Self sustaining pellets of ~ 2g
- Additional ^{nat}Mo samples prepared using powder with different grain sizes
- Samples used in EAR1 campaign at n_TOF

⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo
99%	95%	96%

Samples prepared

Mo samples

Atomic %	⁹² Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	¹⁰⁰ Mo
⁹⁴ Mo	0,63%	98,97%	0,36%	0,01%	0,01%	0,01%	0,01%
⁹⁵ Mo	0,31%	0,69%	95,40%	2,24%	0,51%	0,65%	0,20%
⁹⁶ Mo	0,28%	0,24%	1,01%	95,90%	1,00%	1,32%	0,25%

Isotope	Mass (g)	Areal density (atoms/b)
⁹⁴ Mo	1,9526	3,9592E-03
⁹⁵ Mo	1,9745	3,9558E-03
⁹⁶ Mo	1,9175	3,8064E-03
^{nat} Mo-5 μm	2,014	4,0059E-03
^{nat} Mo-350 μm	1,989	3,9584E-03

Transmission with enriched Mo

Transmission with enriched Mo

- Preliminary results of transmission @10m for enriched pellets;
- Resonance parameters from new compilation;
- Deviation on ⁹⁵Mo content from declared abundance;
- Abundance of biggest contaminants fitted with REFIT.

Transmission with enriched Mo

Nominal	⁹² Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	¹⁰⁰ Mo
⁹⁴ Mo	0,63%	98,97%	0,36%	0,01%	0,01%	0,01%	0,01%
⁹⁵ Mo	0,31%	0,69%	95,40%	2,24%	0,51%	0,65%	0,20%
⁹⁶ Mo	0,28%	0,24%	1,01%	95,90%	1,00%	1,32%	0,25%
Fitted	⁹² Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	¹⁰⁰ Mo
⁹⁴ Mo	0,63%	97,61%	0,35%	0,01%	0,01%	0,01%	0,01%
⁹⁵ Mo	0,31%	0,69%	84,10%	2,24%	0,51%	0,65%	0,20%
⁹⁶ Mo	0,28%	0,24%	1,25%	94,50%	1,08%	1,00%	0,25%

EAR1 samples

EAR1 measurements

Energy

Summary and outlook

What is done:

- Compilation and validation of new resonance parameters file for all molybdenum isotopes
- Preparation of article describing the reccomended resonance parameters
- Capture measurements at n_TOF (EAR2) and transmission measurements at GELINA using enriched samples

What is left to do:

- Full analysis of capture and tramsission data of enriched samples
- Additional capture measurements at n_TOF (EAR1) and GELINA
- Preparation of results for EXFOR submission

Thank you for your attention!

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847594 (ARIEL).

Backup

MACS fractions

Capture cross section ENDF/B-VIII

Libraries sources

Isotope	JENDL-3.3	JENDL-4	ENDF-B/VIII	JEFF-3.3
⁹² Mo	Wasson, Weigmann, Musgrove	Wasson, Weigmann, Musgrove	Mughabghab	JENDL-4
⁹⁴ Mo	Weigmann, Musgrove	Weigmann, Musgrove, Wang	JENDL-3.3	JENDL-4
⁹⁵ Mo	Weigmann, Shwe	Weigmann, Shwe, Wang	Mughabghab	Mughabghab
⁹⁶ Mo	Weigmann, Musgrove	Weigmann, Musgrove, Wang	JENDL-3.3	JENDL-4
⁹⁷ Mo	Weigmann, Shwe	Weigmann, Shwe, Wang	JENDL-3.3	JENDL-4
⁹⁸ Mo	Weigmann, Musgrove, Chrien	Weigmann, Musgrove, Chrien, Babich, Wang	JENDL-3.3	JENDL-4
¹⁰⁰ Mo	Weigmann, Musgrove, Weigmann	Weigmann, Musgrove, Weigmann, Wang	JENDL-3.3	JENDL-4

Backup - ^{nat}Mo abundances

Isotope	Abundance
⁹² Mo	14.84%
⁹⁴ Mo	9.25%
⁹⁵ Mo	15.92%
⁹⁶ Mo	16.68%
⁹⁷ Mo	9.55%
⁹⁸ Mo	24.13%
¹⁰⁰ Mo	9.63%

Detection system

- Li glass scintillators
- Enriched to 95% in ⁶Li
- Placed inside metallic "castle" to reduce background
- Amplitude and time signals
- Time resolution 4,21 ns

Neutron flux monitor

- Neutron flux continuosly monitored
- SiMON (Silicon MONitor) in beam
- Silicon detector facing mylar foil coated in litium
- Minimal reduction of neutron flux

Normalization

- Au sample
- Black resonance at 4.9 eV
- $\Gamma_{\gamma} \gg \Gamma_n$

Extract normalization factor from saturated resonance

Capture detectors

- Five gamma detectors
 - 4 C6D6 liquid scintillators
 - 1 sTED prototype
- Low sensitivity to scattered neutrons
- Fast recovery from gamma flash

Backup - EAR2 samples

Sample	Mass	Areal density
⁹⁴ Mo	1737,5 mg	3,47E-3
⁹⁵ Mo	929,2 mg	1,86E-3
⁹⁶ Mo	1611 mg	3,22E-3
^{nat} Mo pellet	2003,3 mg	4,00E-3
^{nat} Mo powder	985,7 mg	1,97E-3

Time of flight spectra

Backup – EAR2 Measurements

Sample	Protons
⁹⁴ Mo (thick)	4,9E17 (2,8E17)
⁹⁵ Mo	3,7E17
⁹⁶ Mo	4,2E17
natMo	2,1E17
Au	7,3E15
Dummy	1,1E17
Empty	1,1E17
Pb	4,3E16
Filters (Ag, Bi, Cd)	7,3E16
TOTAL	1,84E18