EXTREMELY METAL-POOR Asymptotic Giant Branch Stars

THE 13TH TORINO WORKSHOP ON AGB Stars \& the 3rd Perugia Workshop ON NUCLEAR ASTROPHYSICS
DSA3, University of Perugia, Perugia
June 19-24, 2022

MARIO CIRILLO
Università degli studi di Roma "Tor Vergata"
Istituto Nazionale di Astrofisica -

Population III stars

Population III stars

- First generation of stars
- Zero-metals stars (only H and He)

Population III stars

- First generation of stars
- Zero-metals stars (only H and He)
- Important for two main reasons:

Population III stars

- First generation of stars
- Zero-metals stars (only H and He)
- Important for two main reasons:
1)Most likely energy sources for the Reionization of the Universe

Population III stars

- First generation of stars
- Zero-metals stars (only H and He)
- Important for two main reasons:
1)Most likely energy sources for the Reionization of the Universe
2)First nucleosynthesis of elements heavier than He

Population III stars

- First generation of stars
- Zero-metals stars (only H and He)
- Important for two main reasons:
1)Most likely energy sources for the Reionization of the Universe
2)First nucleosynthesis of elements heavier than He

1

chemical pollution of IGM and subsequent generations of stars form from the ejected material

Population III stars

- First generation of stars
- Zero-metals stars (only H and He)
- Important for two main reasons:
1)Most likely energy sources for the Reionization of the Universe
2)First nucleosynthesis of elements heavier than He
chemical pollution of IGM and subsequent generations of stars form from the ejected material

But...

Population III stars

- Not directly observed yet, but many observational constraints on their existence:
a)detection of metals in Ly- α forest spectra of distant QSOs
b)detection of metals in damped Lyman systems
c) abundance ratios in extremely metal-poor (EMP) stars ([Fe/H] <-3)

Population III stars

- Not directly observed yet, but many observational constraints on their existence:
a)detection of metals in Ly- α forest spectra of distant QSOs
b)detection of metals in damped Lyman systems
> c) abundance ratios in extremely metal-poor (EMP) stars ([Fe/H] <-3)

It is crucial to study the evolution and nucleosynthesis of EMP stars!

My work

My work

- My work focused on models of extremely metal-poor (EMP) stars, with particular attention to their evolution and nucleosynthesis

My work

- My work focused on models of extremely metal-poor (EMP) stars, with particular attention to their evolution and nucleosynthesis
- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$

My work

- My work focused on models of extremely metal-poor (EMP) stars, with particular attention to their evolution and nucleosynthesis
- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$
- Three models with $\mathrm{M}=6 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}

My work

- My work focused on models of extremely metal-poor (EMP) stars, with particular attention to their evolution and nucleosynthesis
- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$
- Three models with $\mathrm{M}=6 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}
- Main property: full coupled code with an advective mixing scheme (FuNS code)

My work

- My work focused on models of extremely metal-poor (EMP) stars, with particular attention to their evolution and nucleosynthesis
- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$
- Three models with $\mathrm{M}=6 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}
- Main property: full coupled code with an advective mixing scheme (FuNS code)
- A full coupled code is extremely important in order to follow the evolution and the nucleosynthesis more precisely, especially during the AGB phase

My work

- My work focused on models of extremely metal-poor (EMP) stars, with particular attention to their evolution and nucleosynthesis
- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$
- Three models with $\mathrm{M}=6 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}
- Main property: full coupled code with an advective mixing scheme (FuNS code)
- A full coupled code is extremely important in order to follow the evolution and the nucleosynthesis more precisely, especially during the AGB phase

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}, \mathrm{PIE}$

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}, \mathrm{PIE}$

- Proton Ingestion Episode at the beginning of the TP-AGB phase

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE

- Proton Ingestion Episode at the beginning of the TP-AGB phase
- The H shell reaches a luminosity $\mathrm{L} \approx 10^{10} \mathrm{~L}_{\odot}$

Hydrogen luminosity

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}, \mathrm{PIE}$

- Proton Ingestion Episode at the beginning of the TP-AGB phase
- The H shell reaches a luminosity $\mathrm{L} \approx 10^{10} \mathrm{~L}_{\odot}$ new phenomenon!

Hydrogen luminosity

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}, \mathrm{PIE}$

- Proton Ingestion Episode at the beginning of the TP-AGB phase
- The H shell reaches a luminosity $\mathrm{L} \approx 10^{10} \mathrm{~L}_{\odot}$ new phenomenon!
- At the subsequent TDU, all the surface main CNO abundances are raised from one to three orders of magnitude

Hydrogen luminosity

Surface abundances

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}, \mathrm{PIE}$

- Proton Ingestion Episode at the beginning of the TP-AGB phase
- The H shell reaches a luminosity $\mathrm{L} \approx 10^{10} \mathrm{~L}_{\odot}$ new phenomenon!
- At the subsequent TDU, all the surface main CNO abundances are raised from one to three orders of magnitude
- But what happens inside the star

Hydrogen luminosity

Surface abundances

 during a PIE?

AGB and PIE

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively

from Lattanzio (2003)

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively
- Thermal Pulse

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively
- Thermal Pulse
- H shell entropy barrier too weak

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively
- Thermal Pulse
- H shell entropy barrier too weak
- PIE!

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively
- Thermal Pulse
- H shell entropy barrier too weak
- PIE!
- Splitting of the convective zone into two separate convective regions

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively
- Thermal Pulse
- H shell entropy barrier too weak
- PIE!
- Splitting of the convective zone into two separate convective regions

AGB and PIE

- The star has now a double shell structure, with the two shells advancing alternatively
- Thermal Pulse
- H shell entropy barrier too weak
- PIE!
- Splitting of the convective zone into two separate convective regions
-TDU

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO
Before the PIE

PIE at maximum luminosity

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44
$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO
a) 3α reactions

Before the PIE

PIE at maximum luminosity

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

Before the PIE
a) 3α reactions $\longrightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

Before the PIE
a) 3α reactions $\longrightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

- b)ingestion of protons

PIE at maximum luminosity

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

a) 3α reactions $\longrightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

- b)ingestion of protons $\square \mathrm{CNO}$ cycle activated in the convective zone generated by the TP

Before the PIE

PIE at maximum luminosity

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

a) 3α reactions $\longrightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

- b)ingestion of protons $\square \mathrm{CNO}$ cycle activated in the convective zone generated by the TP ${ }^{13} \mathrm{C} \uparrow$

Before the PIE

PIE at maximum luminosity

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

- a) 3α reactions $\Rightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$
- b)ingestion of protons $\square \mathrm{CNO}$
- b)ingestion of protons $\longrightarrow \mathrm{CNO}$ zone generated by the TP ${ }^{13} \mathrm{C} \uparrow$ ${ }^{13} \mathrm{C}(\alpha, \mathrm{n}){ }^{16} \mathrm{O}$

Before the PIE
${ }^{13} \mathrm{C} \uparrow$
${ }^{13} \mathrm{C}(\alpha, \mathrm{n}){ }^{16} \mathrm{O}$

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

a) 3α reactions $\longrightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

- b)ingestion of protons $\longrightarrow \mathrm{CNO}$ cycle activated in the convective zone generated by the TP ${ }^{13} \mathrm{C} \uparrow$

Before the PIE

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

Before the PIE
a) 3α reactions $\longrightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

- b)ingestion of protons $\square \mathrm{CNO}$ cycle activated in the convective zone generated by the TP ${ }^{13} \mathrm{C} \uparrow$

$$
{ }^{13} \mathrm{C}(\alpha, \mathrm{n})^{16} \mathrm{O} \Longrightarrow \mathrm{n}_{\mathrm{n}} \gtrsim 10^{14} \mathrm{~cm}^{-3}
$$

- c)CNO cycle activated in the second convective zone

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

Before the PIE
a) 3α reactions $\longrightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

- b)ingestion of protons $\square \mathrm{CNO}$ cycle activated in the convective zone generated by the TP ${ }^{13} \mathrm{C} \uparrow$

$$
{ }^{13} \mathrm{C}(\alpha, \mathrm{n})^{16} \mathrm{O} \Longrightarrow \mathrm{n}_{\mathrm{n}} \gtrsim 10^{14} \mathrm{~cm}^{-3}
$$

- c)CNO cycle activated in the second convective zone
- d)penetration of the convective envelope

PIE at maximum luminosity

TDU at maximum penetration

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: CNO

Before the PIE
a) 3α reactions $\longrightarrow{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

- b)ingestion of protons $\square \mathrm{CNO}$ cycle activated in the convective zone generated by the TP ${ }^{13} \mathrm{C} \uparrow$

$$
{ }^{13} \mathrm{C}(\alpha, \mathrm{n})^{16} \mathrm{O} \Longrightarrow \mathrm{n}_{\mathrm{n}} \gtrsim 10^{14} \mathrm{~cm}^{-3}
$$

- c) CNO cycle activated in the second convective zone
- d)penetration of the convective

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}, \mathrm{PIE}:{ }^{7} \mathrm{Li}$

Before the PIE

PIE at maximum luminosity

TDU at maximum penetration

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: ${ }^{7} \mathrm{Li}$

Before the PIE
a) ${ }^{11} \mathrm{~B}$ is produced via ${ }^{7} \mathrm{Li}(\alpha, \gamma){ }^{11} \mathrm{~B}$ and ${ }^{7} \mathrm{Be}(\alpha, \gamma){ }^{11} \mathrm{C}\left(\beta^{+}, v\right){ }^{11} \mathrm{~B}$

PIE at maximum luminosity

TDU at maximum penetration

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}, \mathrm{PIE}:{ }^{7} \mathrm{Li}$

Before the PIE
a) ${ }^{11} \mathrm{~B}$ is produced via ${ }^{7} \mathrm{Li}(\alpha, \gamma)^{11} \mathrm{~B}$ and ${ }^{7} \mathrm{Be}(\alpha, \gamma){ }^{11} \mathrm{C}\left(\beta^{+}, v\right)^{11} \mathrm{~B}$
b) ${ }^{7} \mathrm{Be}$ is produced via ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$

PIE at maximum luminosity

TDU at maximum penetration

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: ${ }^{7} \mathrm{Li}$

Before the PIE
a) ${ }^{11} \mathrm{~B}$ is produced via ${ }^{7} \mathrm{Li}(\alpha, \gamma){ }^{11} \mathrm{~B}$ and ${ }^{7} \mathrm{Be}(\alpha, \gamma){ }^{11} \mathrm{C}\left(\beta^{+}, v\right)^{11} \mathrm{~B}$

- b) ${ }^{7} \mathrm{Be}$ is produced via ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$ c) Production of ${ }^{7} \mathrm{Li}$ via ${ }^{7} \mathrm{Be}\left(\mathrm{e}^{-}, v\right)^{7} \mathrm{Li}$ ($\mathrm{T} \lesssim 20 \mathrm{MK}$) luminosity

TDU at maximum penetration

$\mathrm{M}=2 \mathrm{M}_{\odot}, \mathrm{Z}=10^{-5}$, PIE: ${ }^{7} \mathrm{Li}$

Before the PIE
a) ${ }^{11} \mathrm{~B}$ is produced via ${ }^{7} \mathrm{Li}(\alpha, \gamma)^{11} \mathrm{~B}$ and ${ }^{7} \mathrm{Be}(\alpha, \gamma){ }^{11} \mathrm{C}\left(\beta^{+}, v\right){ }^{11} \mathrm{~B}$

- b) ${ }^{7} \mathrm{Be}$ is produced via ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$
- c) Production of ${ }^{7} \mathrm{Li}$ via ${ }^{7} \mathrm{Be}\left(\mathrm{e}^{-}, v\right)^{7} \mathrm{Li}$ ($\mathrm{T} \lesssim 20 \mathrm{MK}$)

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z
Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic ${ }_{50}$ Giant Branch Stars, Universe 2022, 8, 44

- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z
Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic ${ }_{51}$ Giant Branch Stars, Universe 2022, 8, 44

- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
- Two convective episodes (CNO cycle and He burning) in $\mathrm{Z}=10^{-4}$ and $\mathrm{Z}=10^{-6}$
$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z
Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic ${ }_{52}$ Giant Branch Stars, Universe 2022, 8, 44

- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
- Two convective episodes (CNO cycle and He burning) in $\mathrm{Z}=10^{-4}$ and $\mathrm{Z}=10^{-6}$
- Three convective episodes (CNO cycle, CNO cycle $+3 \alpha$ reactions and He burning) in $\mathrm{Z}=10^{-10}$
$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z
Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic 53 Giant Branch Stars, Universe 2022, 8, 44

- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
- Two convective episodes (CNO cycle and He burning) in $\mathrm{Z}=10^{-4}$ and $\mathrm{Z}=10^{-6}$
- Three convective episodes (CNO cycle, CNO cycle $+3 \alpha$ reactions and He burning) in $\mathrm{Z}=10^{-10}$
- The star contracts until it reaches $\mathrm{T} \approx 10^{8} \mathrm{~K}$ and 3α reactions take place producing ${ }^{12} \mathrm{C}$
$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z
Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic ${ }_{54}$ Giant Branch Stars, Universe 2022, 8, 44

- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
- Two convective episodes (CNO cycle and He burning) in $\mathrm{Z}=10^{-4}$ and $\mathrm{Z}=10^{-6}$
- Three convective episodes (CNO cycle, CNO cycle $+3 \alpha$ reactions and He burning) in $\mathrm{Z}=10^{-10}$
- The star contracts until it reaches $\mathrm{T} \approx 10^{8} \mathrm{~K}$ and 3α reactions take place producing ${ }^{12} \mathrm{C}$
- When CNO central abundance reaches $\approx 2 \times 10^{-10}$, CNO cycle is activated and a second convective episode appears
$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z

- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
- Two convective episodes (CNO cycle and He burning) in $\mathrm{Z}=10^{-4}$ and $\mathrm{Z}=10^{-6}$
- Three convective episodes (CNO cycle, CNO cycle $+3 \alpha$ reactions and He burning) in $\mathrm{Z}=10^{-10}$
- The star contracts until it reaches $\mathrm{T} \approx 10^{8} \mathrm{~K}$ and 3α reactions take place producing ${ }^{12} \mathrm{C}$
- When CNO central abundance reaches $\approx 2 \times 10^{-10}$, CNO cycle is activated and a second convective episode appears $\boldsymbol{C N O}+3 \alpha$
$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z
Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic ${ }_{56}$

- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
- Two convective episodes (CNO cycle and He burning) in $\mathrm{Z}=10^{-4}$ and $\mathrm{Z}=10^{-6}$
- Three convective episodes (CNO cycle, CNO cycle $+3 \alpha$ reactions and He burning) in $\mathrm{Z}=10^{-10}$
- The star contracts until it reaches $\mathrm{T} \approx 10^{8} \mathrm{~K}$ and 3α reactions take place producing ${ }^{12} \mathrm{C}$
- When CNO central abundance reaches $\approx 2 \times 10^{-10}$, CNO cycle is activated and a second convective episode appears $\Rightarrow \mathrm{CNO}+3 \alpha$
- This leaves a footprint in the HR diagram
$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z
Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic ${ }_{57}$ Giant Branch Stars, Universe 2022, 8, 44

- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
- Two convective episodes (CNO cycle and He burning) in $\mathrm{Z}=10^{-4}$ and $\mathrm{Z}=10^{-6}$
- Three convective episodes (CNO cycle, CNO cycle $+3 \alpha$ reactions and He burning) in $\mathrm{Z}=10^{-10}$
- The star contracts until it reaches $\mathrm{T} \approx 10^{8} \mathrm{~K}$ and 3α reactions take place producing ${ }^{12} \mathrm{C}$
- When CNO central abundance reaches $\approx 2 \times 10^{-10}$, CNO cycle is activated and a second convective episode appears $\Rightarrow \mathrm{CNO}+3 \alpha$
- This leaves a footprint in the HR diagram
$M=6 M_{\odot}$, different Z

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different Z
- Progressive reduction of core masses at each convective episode as Z decreases (more compact structures)
- Two convective episodes (CNO cycle and He burning) in $\mathrm{Z}=10^{-4}$ and $\mathrm{Z}=10^{-6}$
- Three convective episodes (CNO cycle, CNO cycle $+3 \alpha$ reactions and He burning) in $\mathrm{Z}=10^{-10}$
- The star contracts until it reaches $\mathrm{T} \approx 10^{8} \mathrm{~K}$ and 3α reactions take place producing ${ }^{12} \mathrm{C}$
- When CNO central abundance reaches $\approx 2 \times 10^{-10}$, CNO cycle is activated and a second convective episode appears $\boldsymbol{C N O}+3 \alpha$
- This leaves a footprint in the HR diagram
- Metal-poor stars are hotter than metal-rich stars \Rightarrow He burning in the blue part of the HR diagram

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}:$ SDU

$\mathbf{M}=6 \mathbf{M}_{\odot}$, different $7: S D T$

Cirillo, M.; Piersanti, L.;
Straniero, O. Extremely Metal-
Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

	$Z=\mathbf{1 0}^{-4}$		$Z=\mathbf{1 0}^{-\mathbf{6}}$		$Z=\mathbf{1 0}^{-\mathbf{1 0}}$	
	Before	After	Before	After	Before	After
H	7.50×10^{-1}	6.51×10^{-1}	7.50×10^{-1}	6.50×10^{-1}	7.50×10^{-1}	6.14×10^{-1}
${ }^{4} \mathrm{He}$	2.50×10^{-1}	3.49×10^{-1}	2.50×10^{-1}	3.50×10^{-1}	2.50×10^{-1}	3.86×10^{-1}
${ }^{12} \mathrm{C}$	1.74×10^{-5}	8.21×10^{-6}	1.74×10^{-7}	5.35×10^{-7}	1.74×10^{-11}	8.78×10^{-8}
${ }^{13} \mathrm{C}$	1.97×10^{-7}	3.66×10^{-7}	1.97×10^{-9}	2.58×10^{-9}	1.97×10^{-13}	1.29×10^{-12}
${ }^{14} \mathrm{~N}$	4.90×10^{-6}	2.69×10^{-5}	4.90×10^{-8}	3.87×10^{-7}	4.90×10^{-12}	1.45×10^{-9}
${ }^{16} \mathrm{O}$	4.25×10^{-5}	3.19×10^{-5}	4.25×10^{-7}	2.19×10^{-7}	4.25×10^{-11}	1.81×10^{-10}
CNO	4.46×10^{-6}	4.60×10^{-6}	4.46×10^{-8}	8.59×10^{-8}	4.46×10^{-12}	7.43×10^{-9}

$M=6 M_{\odot}$, different $Z: S D U$

Cirillo, M.; Piersanti, L.;
Straniero, O. Extremely MetalPoor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

	$\boldsymbol{Z}=\mathbf{1 0}^{-4}$		$\boldsymbol{Z}=\mathbf{1 0}^{-\mathbf{6}}$		$\boldsymbol{Z}=\mathbf{1 0}^{-\mathbf{1 0}}$	
	Before	After	Before	After	Before	After
H	7.50×10^{-1}	6.51×10^{-1}	7.50×10^{-1}	6.50×10^{-1}	7.50×10^{-1}	6.14×10^{-1}
${ }^{4} \mathrm{He}$	2.50×10^{-1}	3.49×10^{-1}	2.50×10^{-1}	3.50×10^{-1}	2.50×10^{-1}	3.86×10^{-1}
${ }^{12} \mathrm{C}$	1.74×10^{-5}	8.21×10^{-6}	1.74×10^{-7}	5.35×10^{-7}	1.74×10^{-11}	8.78×10^{-8}
${ }^{13} \mathrm{C}$	1.97×10^{-7}	3.66×10^{-7}	1.97×10^{-9}	2.58×10^{-9}	1.97×10^{-13}	1.29×10^{-12}
${ }^{14} \mathrm{~N}$	4.90×10^{-6}	2.69×10^{-5}	4.90×10^{-8}	3.87×10^{-7}	4.90×10^{-12}	1.45×10^{-9}
${ }^{16} \mathrm{O}$	4.25×10^{-5}	3.19×10^{-5}	4.25×10^{-7}	2.19×10^{-7}	4.25×10^{-11}	1.81×10^{-10}
CNO	4.46×10^{-6}	4.60×10^{-6}	4.46×10^{-8}	8.59×10^{-8}	4.46×10^{-12}	7.43×10^{-9}

- In the $\mathrm{Z}=10^{-4}$ model, the surface abundances of ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$ decrease, while those of ${ }^{13} \mathrm{C}$ and ${ }^{14} \mathrm{~N}$ increase, but the total number of $\mathrm{C}+\mathrm{N}+\mathrm{O}$ nuclei is almost conserved

$\mathbf{M}=6 \mathbf{M}_{\odot}$, different $7: S D T$

Cirillo, M.; Piersanti, L.;
Straniero, O. Extremely Metal-
Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

	$\boldsymbol{Z}=\mathbf{1 0}^{-\mathbf{4}}$			$\boldsymbol{Z = \mathbf { 1 0 } ^ { - \mathbf { 6 } }}$		$\boldsymbol{Z}=\mathbf{1 0}^{\mathbf{- 1 0}}$	
	Before	After	Before	After	Before	After	
H	7.50×10^{-1}	6.51×10^{-1}	7.50×10^{-1}	6.50×10^{-1}	7.50×10^{-1}	6.14×10^{-1}	
${ }^{4} \mathrm{He}$	2.50×10^{-1}	3.49×10^{-1}	2.50×10^{-1}	3.50×10^{-1}	2.50×10^{-1}	3.86×10^{-1}	
${ }^{12} \mathrm{C}$	1.74×10^{-5}	8.21×10^{-6}	1.74×10^{-7}	5.35×10^{-7}	1.74×10^{-11}	8.78×10^{-8}	
${ }^{13} \mathrm{C}$	1.97×10^{-7}	3.66×10^{-7}	1.97×10^{-9}	2.58×10^{-9}	1.97×10^{-13}	1.29×10^{-12}	
${ }^{14} \mathrm{~N}$	4.90×10^{-6}	2.69×10^{-5}	4.90×10^{-8}	3.87×10^{-7}	4.90×10^{-12}	1.45×10^{-9}	
${ }^{16} \mathrm{O}$	4.25×10^{-5}	3.19×10^{-5}	4.25×10^{-7}	2.19×10^{-7}	4.25×10^{-11}	1.81×10^{-10}	
CNO	4.46×10^{-6}	4.60×10^{-6}	4.46×10^{-8}	8.59×10^{-8}	4.46×10^{-12}	7.43×10^{-9}	

- In the $\mathrm{Z}=10^{-6}$ model, the surface abundance of ${ }^{12} \mathrm{C}$ increases after the SDU

$\mathbf{M I}^{\circ}=6 \mathbf{M}_{\odot}$ different $7: S D T$

Cirillo, M.; Piersanti, L.;
Straniero, O. Extremely Metal-
Poor Asymptotic Giant Branch
Stars, Universe 2022, 8, 44

	$\boldsymbol{Z}=\mathbf{1 0}^{-\mathbf{4}}$			$\boldsymbol{Z = \mathbf { 1 0 } ^ { - \mathbf { 6 } }}$		$\boldsymbol{Z}=\mathbf{1 0}^{\mathbf{- 1 0}}$	
	Before	After	Before	After	Before	After	
H	7.50×10^{-1}	6.51×10^{-1}	7.50×10^{-1}	6.50×10^{-1}	7.50×10^{-1}	6.14×10^{-1}	
${ }^{4} \mathrm{He}$	2.50×10^{-1}	3.49×10^{-1}	2.50×10^{-1}	3.50×10^{-1}	2.50×10^{-1}	3.86×10^{-1}	
${ }^{12} \mathrm{C}$	1.74×10^{-5}	8.21×10^{-6}	1.74×10^{-7}	5.35×10^{-7}	1.74×10^{-11}	8.78×10^{-8}	
${ }^{13} \mathrm{C}$	1.97×10^{-7}	3.66×10^{-7}	1.97×10^{-9}	2.58×10^{-9}	1.97×10^{-13}	1.29×10^{-12}	
${ }^{14} \mathrm{~N}$	4.90×10^{-6}	2.69×10^{-5}	4.90×10^{-8}	3.87×10^{-7}	4.90×10^{-12}	1.45×10^{-9}	
${ }^{16} \mathrm{O}$	4.25×10^{-5}	3.19×10^{-5}	4.25×10^{-7}	2.19×10^{-7}	4.25×10^{-11}	1.81×10^{-10}	
CNO	4.46×10^{-6}	4.60×10^{-6}	4.46×10^{-8}	8.59×10^{-8}	4.46×10^{-12}	7.43×10^{-9}	

- In the $\mathrm{Z}=10^{-6}$ model, the surface abundance of ${ }^{12} \mathrm{C}$ increases after the SDU \Rightarrow new phenomenon!

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{SDU}$

Cirillo, M.; Piersanti, L.;
Straniero, O. Extremely MetalPoor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

	$\mathbf{Z = 1 0 ^ { - 4 }}$		$\boldsymbol{Z}=\mathbf{1 0}^{-\mathbf{6}}$			$\mathbf{Z = 1 0 ^ { - 1 0 }}$	
	Before	After	Before	After	Before	After	
H	7.50×10^{-1}	6.51×10^{-1}	7.50×10^{-1}	6.50×10^{-1}	7.50×10^{-1}	6.14×10^{-1}	
${ }^{4} \mathrm{He}$	2.50×10^{-1}	3.49×10^{-1}	2.50×10^{-1}	3.50×10^{-1}	2.50×10^{-1}	3.86×10^{-1}	
${ }^{12} \mathrm{C}$	1.74×10^{-5}	8.21×10^{-6}	1.74×10^{-7}	5.35×10^{-7}	1.74×10^{-11}	8.78×10^{-8}	
${ }^{13} \mathrm{C}$	1.97×10^{-7}	3.66×10^{-7}	1.97×10^{-9}	2.58×10^{-9}	1.97×10^{-13}	1.29×10^{-12}	
${ }^{14} \mathrm{~N}$	4.90×10^{-6}	2.69×10^{-5}	4.90×10^{-8}	3.87×10^{-7}	4.90×10^{-12}	1.45×10^{-9}	
${ }^{16} \mathrm{O}$	4.25×10^{-5}	3.19×10^{-5}	4.25×10^{-7}	2.19×10^{-7}	4.25×10^{-11}	1.81×10^{-10}	
CNO	4.46×10^{-6}	4.60×10^{-6}	4.46×10^{-8}	8.59×10^{-8}	4.46×10^{-12}	7.43×10^{-9}	

- In the $\mathrm{Z}=10^{-10}$ model, all the surface abundances of the CNO isotopes increase after the SDU $\left({ }^{12} \mathrm{C}\right.$ mass fraction becomes ≈ 5000 times higher after the SDU)

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{SDU}$

Cirillo, M.; Piersanti, L.;
Straniero, O. Extremely MetalPoor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

	$\mathbf{Z = 1 0 ^ { - 4 }}$		$\boldsymbol{Z}=\mathbf{1 0}^{-\mathbf{6}}$			$\mathbf{Z = 1 0 ^ { - 1 0 }}$	
	Before	After	Before	After	Before	After	
H	7.50×10^{-1}	6.51×10^{-1}	7.50×10^{-1}	6.50×10^{-1}	7.50×10^{-1}	6.14×10^{-1}	
${ }^{4} \mathrm{He}$	2.50×10^{-1}	3.49×10^{-1}	2.50×10^{-1}	3.50×10^{-1}	2.50×10^{-1}	3.86×10^{-1}	
${ }^{12} \mathrm{C}$	1.74×10^{-5}	8.21×10^{-6}	1.74×10^{-7}	5.35×10^{-7}	1.74×10^{-11}	8.78×10^{-8}	
${ }^{13} \mathrm{C}$	1.97×10^{-7}	3.66×10^{-7}	1.97×10^{-9}	2.58×10^{-9}	1.97×10^{-13}	1.29×10^{-12}	
${ }^{14} \mathrm{~N}$	4.90×10^{-6}	2.69×10^{-5}	4.90×10^{-8}	3.87×10^{-7}	4.90×10^{-12}	1.45×10^{-9}	
${ }^{16} \mathrm{O}$	4.25×10^{-5}	3.19×10^{-5}	4.25×10^{-7}	2.19×10^{-7}	4.25×10^{-11}	1.81×10^{-10}	
CNO	4.46×10^{-6}	4.60×10^{-6}	4.46×10^{-8}	8.59×10^{-8}	4.46×10^{-12}	7.43×10^{-9}	

- In the $\mathrm{Z}=10^{-10}$ model, all the surface abundances of the CNO isotopes increase after the $\operatorname{SDU}\left({ }^{12} \mathrm{C}\right.$ mass fraction becomes ≈ 5000 times higher after the SDU)
- This is a consequence of the coexistence of core-H and He burning

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{SDU}$

Cirillo, M.; Piersanti, L.;
Straniero, O. Extremely MetalPoor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

	$Z=10^{-4}$		$Z=10^{-6}$		$Z=10^{-10}$	
	Before	After	Before	After	Before	After
H	7.50×10^{-1}	6.51×10^{-1}	7.50×10^{-1}	6.50×10^{-1}	7.50×10^{-1}	6.14×10^{-1}
${ }^{4} \mathrm{He}$	2.50×10^{-1}	3.49×10^{-1}	2.50×10^{-1}	3.50×10^{-1}	2.50×10^{-1}	3.86×10^{-1}
${ }^{12} \mathrm{C}$	1.74×10^{-5}	8.21×10^{-6}	1.74×10^{-7}	5.35×10^{-7}	1.74×10^{-11}	8.78×10^{-8}
${ }^{13} \mathrm{C}$	1.97×10^{-7}	3.66×10^{-7}	1.97×10^{-9}	2.58×10^{-9}	1.97×10^{-13}	1.29×10^{-12}
${ }^{14} \mathrm{~N}$	4.90×10^{-6}	2.69×10^{-5}	4.90×10^{-8}	3.87×10^{-7}	4.90×10^{-12}	1.45×10^{-9}
${ }^{16} \mathrm{O}$	4.25×10^{-5}	3.19×10^{-5}	4.25×10^{-7}	2.19×10^{-7}	4.25×10^{-11}	1.81×10^{-10}
CNO	4.46×10^{-6}	4.60×10^{-6}	4.46×10^{-8}	8.59×10^{-8}	4.46×10^{-12}	7.43×10^{-9}

- In the $\mathrm{Z}=10^{-10}$ model, all the surface abundances of the CNO isotopes increase after the SDU $\left({ }^{12} \mathrm{C}\right.$ mass fraction becomes ≈ 5000 times higher after the SDU)
- This is a consequence of the coexistence of core-H and He burning
- Enhancement of $\mathrm{C}+\mathrm{N}+\mathrm{O}$ in the envelope

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{SDU}$

Cirillo, M.; Piersanti, L.;
Straniero, O. Extremely MetalPoor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

	$Z=10^{-4}$		$Z=10^{-6}$		$Z=10^{-10}$	
	Before	After	Before	After	Before	After
H	7.50×10^{-1}	6.51×10^{-1}	7.50×10^{-1}	6.50×10^{-1}	7.50×10^{-1}	6.14×10^{-1}
${ }^{4} \mathrm{He}$	2.50×10^{-1}	3.49×10^{-1}	2.50×10^{-1}	3.50×10^{-1}	2.50×10^{-1}	3.86×10^{-1}
${ }^{12} \mathrm{C}$	1.74×10^{-5}	8.21×10^{-6}	1.74×10^{-7}	5.35×10^{-7}	1.74×10^{-11}	8.78×10^{-8}
${ }^{13} \mathrm{C}$	1.97×10^{-7}	3.66×10^{-7}	1.97×10^{-9}	2.58×10^{-9}	1.97×10^{-13}	1.29×10^{-12}
${ }^{14} \mathrm{~N}$	4.90×10^{-6}	2.69×10^{-5}	4.90×10^{-8}	3.87×10^{-7}	4.90×10^{-12}	1.45×10^{-9}
${ }^{16} \mathrm{O}$	4.25×10^{-5}	3.19×10^{-5}	4.25×10^{-7}	2.19×10^{-7}	4.25×10^{-11}	1.81×10^{-10}
CNO	4.46×10^{-6}	4.60×10^{-6}	4.46×10^{-8}	8.59×10^{-8}	4.46×10^{-12}	7.43×10^{-9}

- In the $\mathrm{Z}=10^{-10}$ model, all the surface abundances of the CNO isotopes increase after the $\operatorname{SDU}\left({ }^{12} \mathrm{C}\right.$ mass fraction becomes ≈ 5000 times higher after the SDU)
- This is a consequence of the coexistence of core-H and He burning
- Enhancement of $\mathrm{C}+\mathrm{N}+\mathrm{O}$ in the envelope \longrightarrow efficiency of the shell-H burning increases

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}:$ TP-AGB

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- H-flash or PIE

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}:$ TP-AGB

- H-flash or PIE

- The occurrence of the first PIE leads to stronger TPs (helium luminosity)

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}:$ TP-AGB

- H-flash or PIE

- The occurrence of the first PIE leads to stronger TPs (helium luminosity)
- The subsequent TPs are followed by TDUs

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- H-flash or PIE

- The occurrence of the first PIE leads to stronger TPs (helium luminosity)
- The subsequent TPs are followed by TDUs $\boldsymbol{\square}$ surface enrichment in 3α and CNO products

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- H-flash or PIE

- The occurrence of the first PIE leads to stronger TPs (helium luminosity)
- The subsequent TPs are followed by TDUs \Rightarrow surface enrichment in 3α and CNO products
- ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}$

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- H-flash or PIE

- The occurrence of the first PIE leads to stronger TPs (helium luminosity)
- The subsequent TPs are followed by TDUs $\boldsymbol{\square}$ surface enrichment in 3α and CNO products

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}:$ TP-AGB

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- PIEs hampered by low metallicity

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- PIEs hampered by low metallicity
- TDUs only during the PIEs

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- PIEs hampered by low metallicity
- TDUs only during the PIEs
- Weaker TPs

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- PIEs hampered by low metallicity
- TDUs only during the PIEs
- Weaker TPs \square PIEs and TDUs cease

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- PIEs hampered by low metallicity
- TDUs only during the PIEs
- Weaker TPs \longrightarrow PIEs and TDUs cease \longrightarrow new phenomenon!

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- PIEs hampered by low metallicity
- TDUs only during the PIEs
- Weaker TPs \square PIEs and TDUs cease \longrightarrow new phenomenon!
- Shell-H burning tends to become stationary

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- PIEs hampered by low metallicity
- TDUs only during the PIEs
- Weaker TPs \square PIEs and TDUs cease \longrightarrow new phenomenon!
- Shell-H burning tends to become stationary \longrightarrow new phenomenon!

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- PIEs hampered by low metallicity
- TDUs only during the PIEs
- Weaker TPs \square PIEs and TDUs cease \longrightarrow new phenomenon!
- Shell-H burning tends to become stationary \longrightarrow new phenomenon!
- Moderate HBB and CNO equilibrium

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

$$
\mathrm{Z}=10^{-10}
$$

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}:$ TP-AGB

- Weaker TP

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}:$ TP-AGB

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- Weaker TP \square no PIEs!

- Lower T at the base of the convective envelope

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}:$ TP-AGB

- Weaker TP \square no PIEs!

- Lower T at the base of the convective envelope \longrightarrow marginal activation of HBB

$\mathrm{M}=6 \mathrm{M}_{\odot}$, different $\mathrm{Z}: \mathrm{TP}-\mathrm{AGB}$

- Weaker TP \Rightarrow no PIEs!
- Lower T at the base of the convective envelope \longrightarrow marginal activation of HBB
- Shell-H burning tends to become stationary as in the previous case

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-

Conclusions and ongoing activity

Conclusions and ongoing activity

- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$
- Three models with $\mathrm{M}=6 \mathrm{M}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}
- Main property: full coupled code with an advective mixing scheme

Conclusions and ongoing activity

- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$
- Three models with $\mathrm{M}=6 \mathrm{M}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}
- Main property: full coupled code with an advective mixing scheme

$$
\mathrm{M}=2 \mathrm{M}_{\odot} \text { and } \mathrm{Z}=10^{-5}
$$

- PIE
- Huge production of neutrons ($\mathrm{n}_{\mathrm{n}} \gtrsim 10^{14}$ cm^{-3})
- Surface enrichment in CNO isotopes
- Large surface ${ }^{7}$ Li growth (≈ 5 orders of magnitude)

Conclusions and ongoing activity

- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$
- Three models with $\mathrm{M}=6 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}
- Main property: full coupled code with an advective mixing scheme

$$
\mathrm{M}=2 \mathrm{M}_{\odot} \text { and } \mathrm{Z}=10^{-5}
$$

PIE

- Huge production of neutrons ($\mathrm{n}_{\mathrm{n}} \gtrsim 10^{14}$ cm^{-3})
- Surface enrichment in CNO isotopes
- Large surface ${ }^{7}$ Li growth (≈ 5 orders of magnitude)
$\mathrm{M}=6 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}
- Anomalous core-H and He burning as Z decreases
- Core-He burning at higher T as Z decreases
- Anomalous SDU as Z decreases
- Anomalous behaviour during the TPAGB phase

Conclusions and ongoing activity

- One model with $\mathrm{M}=2 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-5}$
- Three models with $\mathrm{M}=6 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}
- Main property: full coupled code with an advective mixing scheme

$$
\mathrm{M}=2 \mathrm{M}_{\odot} \text { and } \mathrm{Z}=10^{-5}
$$

$\mathrm{M}=6 \mathrm{M}_{\odot}$ and $\mathrm{Z}=10^{-4}, 10^{-6}$ and 10^{-10}

PIE

- Huge production of neutrons $\left(\mathrm{n}_{\mathrm{n}} \gtrsim 10^{14}\right.$ cm^{-3})
- Surface enrichment in CNO isotopes
- Large surface ${ }^{7}$ Li growth (≈ 5 orders of magnitude)
- Anomalous core-H and He burning as Z decreases
- Core-He burning at higher T as Z decreases
- Anomalous SDU as Z decreases
- Anomalous behaviour during the TPAGB phase
- Ongoing activity: full grid of models of EMP stars with $1 \mathrm{M}_{\odot} \leq \mathrm{M} \leq 20 \mathrm{M}_{\odot}$ and $3.1 \times 10^{-4} \leq \mathrm{Z} \leq 10^{-10}$ in order to investigate their main properties and peculiar phenomena like Proton Ingestion Episode

THANKS FOR YOUR ATTENTION!

Cirillo, M.; Piersanti, L.; Straniero, O. Extremely Metal-Poor Asymptotic Giant Branch Stars, Universe 2022, 8, 44

MARIO CIRILLO
Università degli studi di Roma "Tor Vergata"
Istituto Nazionale di Astrofisica -
OSSERVATORIO ASTRONOMICO D’ABRUZZO

Equation of state

Equation of state

- Important because it influences the extension of the convective zones in AGB (SDU, TDU and HBB)

Equation of state

- Important because it influences the extension of the convective zones in AGB (SDU, TDU and HBB)
- In metal-poor stars convection is able to mix regions with different chemical compositions, leading to thermal runaways and thus reducing the characteristic timescales with respect to more metal-rich stars

Equation of state

- Important because it influences the extension of the convective zones in AGB (SDU, TDU and HBB)
- In metal-poor stars convection is able to mix regions with different chemical compositions, leading to thermal runaways and thus reducing the characteristic timescales with respect to more metal-rich stars
- The reduction of the burning timescales influences the main physical quantities of the star

Equation of state

- Important because it influences the extension of the convective zones in AGB (SDU, TDU and HBB)
- In metal-poor stars convection is able to mix regions with different chemical compositions, leading to thermal runaways and thus reducing the characteristic timescales with respect to more metal-rich stars
- The reduction of the burning timescales influences the main physical quantities of the star \longrightarrow coupling physics, burning and mixing affects the evolution of the whole structure

Equation of state

- Two different equations of state adopted

Equation of state

- Two different equations of state adopted $\log \mathrm{T}=6.5$

EOS	Main properties	Temperature
range		

Straniero 2)Deviations from perfect gas (electron degeneracy, pair
and production, relativistic effects and Coulomb interactions) taken into
Prada account
$6<\log \mathrm{T}<10$
Moroni 3)Ideal for advanced burning phases and high temperatures and densities
1)Partially ionized matter
2)More accurate than Saha equation of state because of the
Opal treatment of all excited states, taking into account many-body $3.3<\log \mathrm{T}<8.3$ effects and Coulomb interactions
3)Ideal for atmospheric layers and low temperatures and densities

