Measurements of s process neutron source cross sections

Andreas Best

INFN Naples University of Naples "Federico II"

European Research Council Established by the European Commission

A. Best (UniNa/INFN-Na)

s process source measurements

✓ ♂ ▷ < ≥ ▷ < ≥ ▷</p>
June 20, 2022

1/20

Main s process

Straniero et al. 2006

- $\lambda_{(n,\gamma)} \ll \lambda_{\beta^-}$: nucleosynthesis follows valley of stability
- Takes place in "13C pocket" in thermally pulsing AGB stars
- ${}^{13}C(\alpha, n){}^{16}O$ main neutron sources for s process
- $^{13}\text{C}(\alpha,\,n)^{16}\text{O}$: T \approx 90 MK, energy range 140 230 keV
- ullet Also possible neutron source for i-process (~ 280 MK, 285 510 keV)
- ${}^{22}Ne(\alpha, n){}^{25}Mg$ small contribution during late stages of main s process

Heil et al. 2008

- Heil et al.: down to 317 keV, large uncertainties below 400 keV
- Drotleff et al.: $E_{cm,min} = 279$ keV, large uncertainties below 350 keV
- Environmental background
 - Heil 340 counts/hour
 - Drotleff 290 counts/hour
- At higher energies strong differences in normalization
- Trojan horse data anchor to ANC/high-energy c.s.

LUNA / MV campaigns

- Can cover 50 3500 keV with two accelerators
- Same setup(s) for both campaigns, energy overlap 350 400 keV
- Opportunity to calibrate using more reactions at higher energies
- p/α beam currents order of hundreds of μA

Advantages of going underground

- Direct low-energy measurements limited by natural background
- $\bullet~\text{LNGS}\approx3400$ m.w.e. underneath Gran Sasso mountain chain
- Cosmic-ray induced neutrons efficiently shielded against
- Residual flux from (α, n) and fission in rocks
- $\bullet\,$ Neutron flux underground suppressed by ≈ 1000 w.r.t. surface

Setup - Detector

- $\bullet~6~\times~25$ cm, 12 $\times~40$ cm long, 10 bar ^3He counters in polyethyelene
- Efficiency $\approx 30\%~(^{51}V(p,n)^{51}Cr,~AmBe)$
- 2" 5% borated PE shielding
- 1-2 counts/hour total (internal+external) background
- Csedreki et al. NIM A A 994 (2021) 165081

Measurement strategy

- \bullet Solid target (99 % ^{13}C on Ta) \rightarrow degradation under beam
- Normally, use resonance yield profile to monitor target
- No ¹³C resonances in LUNA 400 energy range!
- Switch to H⁺ beam, measure ${}^{13}C(p,\gamma)$ gamma ray shape
- Ciani et al., EPJ A 56 (2020), 75

Results

- Covered 235 300 keV, 50 keV lower than before
- pprox 100 C for lowest point
- Problem remains connection to different normalizations
- Ciani et al. PRL 127, 152701 (2021)

R matrix + astro

- Adopted two normalizations: Harissopulos, Drotleff&Heil
- LUNA data kept fixed, others rescaled
- MC R matrix fits for each set for combined reaction rate PDF
- Lower limit used to test maximal impact on stellar output

June 20, 2022

9/20

22 Ne(α , n) 25 Mg physics case: production of the heavy elements, and more

- Residual elemental abundances attributed to other n-processes ${\rm N}_r = {\rm N}_{\odot}$ - ${\rm N}_s$
- Formation of early solar system cosmic grains in meteorites
- Astronomical observation of gamma-rays (COMPTEL, INTEGRAL)
- Mg isotope observations in stellar atmospheres

22 Ne(α , n) 25 Mg cross section

R matrix courtesy of R. J. deBoer, University of Notre Dame/JINA

- Capabilities on surface exhausted (20 years since last data)
- Current lowest data 2 reactions/minute
- Covers one resonance close to Gamow
- 300 keV of upper limits...
- Many states that can contribute
- Need improvement by more than 2 orders of magnitude

< 1 k

Low-energy states

E _n [keV]	E _x [keV]	E _α [keV]	Jπ	Neutron width [eV]
19.92	11112	589	2+	2095
72.82	11163	649	2+	5310
79.23	11169	656	3-	1940
187.95	11274	779	2+	410
194.01	11280	786	3-	1810
243.98	11328	843 ?	?	171
235 [14]	11319	832	2+	Total width = 250 eV

Table 1. Properties of states in ²⁶Mg between the neutron threshold and the 832 keV resonance. Values taken from [15], except for the last row, which is from [14].

- Recent nTOF study of energies and neutron widths (Massimi et al. PLB 768 (2017), 1)
- 832 keV state still a bit unclear w.r.t. n/α channel, energy
- No α widths are known

What to do?

- Drastic background reduction
- Large beam current increase
- Suppression/identification of beam-induced background

Beam-induced backgrounds

Q-values:

- ²²Ne = 478 keV
- \blacktriangleright ¹⁰B = 1059 keV
- ▶ $^{11}\mathrm{B} = 158~\mathrm{keV}$
- ▶ ¹³C = 2216 keV

-47 ▶

→ ∃ →

Detector array

- Require some sort of energy sensitivity
- Hybrid detector array: ³He counters & liquid scintillator
- High efficiency + energy sensitive
- Prototype built & tested

< 1 k

- ∢ ⊒ →

A. Best (UniNa/INFN-Na)

Background reduction

- Deep underground @ LNGS: Suppression of (thermal) neutron background by > 1000
- Additional clean detector material & PSD
- Extended gas target with enriched ²²Ne
- Coincidence/Anticoincidence
- Total background < 1 count/hour

Top-of-the-line accelerator

- Specifically designed to fit nuclear astrophysics needs
- Reaction rates of < 1/hour:
 - Beam current (\approx 5× Jaeger et al.): push signal-noise ratio
 - Current stability: measurements of the order of weeks
 - Energy stability: must not drift over long periods
- 300 3500 kV: cover entire astrophysical energy range

Goals

- Cover from threshold to 3.5 MeV
- > two orders of magnitude improvement
- Comprehensive *R* matrix analysis
- Perform nucleosynthesis calculations with new data

→ ∃ →

< f³ ► <

Status

- 5(+1)-year, since February 2020
 - Target+detector assembled
 - Target characterisation at CIRCE
 - Detector background investigated
 - DAQ development underway
 - Detector characterisation at FRANZ
- Assembly at LNGS end of year
- Underground campaign at LUNA MV
- Data evaluation and astrophysical impact - collaboration with M. Pignatari/Budapest

Summary

- Good times for s process
- ${}^{13}C(\alpha, n){}^{16}O$
 - Wealth of new data, low-E, high-E
 - Global R matrix analysis in planning
- ${}^{22}Ne(\alpha, n){}^{25}Mg$
 - Steady influx of indirect data
 - Push direct cross section towards Gamow energy with SHADES

(日) (同) (日) (日)

Established by the European Commission

20 / 20