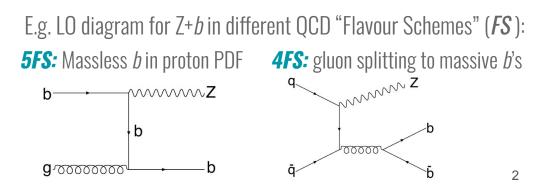
Challenging Measurements with *b*-jets @ATLAS GE F. Sforza - Riunione di Gruppo 1 INFN GE- 24/02/2021

The importance of Beauty (quark) at LHC


Beauty (or b) quarks - of $m_b \sim 4.2 \text{ GeV}$ - **are key items when exploring fundamental physics** \Rightarrow Two examples where ATLAS Genoa has leading role & recent results

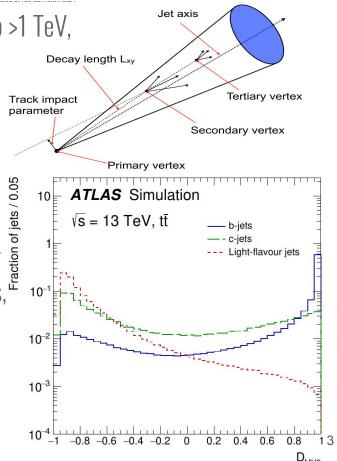
A window on the Higgs properties:

- Dominating $H \rightarrow b \bar{b}$ branching ratio
- High statistics (but large background) test of rare 2.9% YY 0.2% ZZ 2.6% **Higgs production** gg ττ 8.2% 6.3% — μμ, Ζγ, … modes or in WW 21.4% challenging bb phase space 58.4% \Rightarrow BSM sensitivity!

A probe of complex QCD processes (new@GE !)

- Heavy-flavour (HF) quark mass in QCD predictions?
- What about the HF content of the proton PDFs?
- Reliability of state-of-the-art MC generators at LHC?

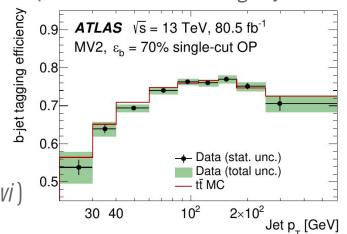
High- p_T *b*-jet identification in ATLAS: Detector and Algorithms


Identification of *b*-quarks inside high- p_T jets, from ~20 GeV to >1 TeV, relies on typical characteristics of B-hadrons in the *b*-jet:

- Long lifetime, secondary vertices, decay pattern, etc.
- Greatly improved in LHC Run 2 thanks to installation of new pixel detector (IBL) very close to beamline (~3cm)

INFN Genoa led IBL construction and now upgrade towards HL-LHC

Multiple tracking and jet information condensed using multivariate (MV) algorithms, and *Deep NN,* for optimal identification of *b*-jets vs different flavour jets (c or light-flavour jets)


High- p_T *b*-jet identification: Selection and Efficiency Calibration

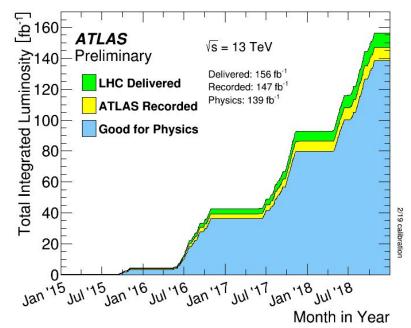
 In practical terms the *b*-jet identification proceeds with a *"cut"* on the MV algorithm output

WP	Cut value X	<i>b</i> -jet efficiency (ε_b)	<i>c</i> -jet mistag rate (ε_c)	LF-jet mistag rate ($\varepsilon_{\rm LF}$)
85%	0.1758	85%	32%	2.9%
77%	0.6459	77%	16%	0.77%
70%	0.8244	70%	8.3%	0.26%
60%	0.9349	60%	2.9 %	0.065%
50%	0.9769	50%	0.94 %	0.017%

- *b*-jet identification performance evaluated on MC but crucial to calibrate it with reference candles in *Data* \Rightarrow inaccuracy in detector description or QCD simulation of *b/c/light*-jets
- Example of $t\bar{t}$ events used for the extraction of the efficiency correction (<u>EPJC 79(2019)970</u>, with the leading contribution of *A. Coccaro*)

NB: MV algorithm optimization, MC efficiency calibration, etc. handled by *Flavour Tagging ATLAS Group* (convened by *C. Schiavi*)

ATLAS Run 2: measurements limited by systematics or statistics


All the (quickly) described, complex infrastructure needed to obtain challenging measurements! Presenting in the next slides 3 recent measurements done using the ATLAS Run 2 dataset:

Discussed in more detail (leading author *F.S.*):

• Z+b- jets cross section [JHEP 07 (2020) 044] \Rightarrow 36 fb⁻¹ of data, systematic limited

Presenting only the results:

- VHbb in boosted regime [arXiv:2008.02508]
 ⇒ 139 fb⁻¹, statistically limited measurement (Chair of internal review board was A.Coccaro)
- Search for VBF(+ γ) Hbb [<u>arXiv:2010.13651</u>] \Rightarrow 139 fb⁻¹, stat. limited (ATLAS GE research line in VBF, chair of internal review board was *F.Parodi*)

State-of-the-art of Z+*b*-jet theoretical predictions

Measurement challenges theoretical predictions for vector boson (Z here) production+b quarks:

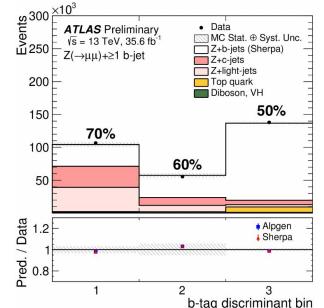
Examples of the tested	Generator	N _{max} NLO	LO	FNS	PDF set	Parton Shower
QCD MC predictions \Rightarrow	Z+jets (including Z + b and Z + bb)					
	Sherpa 5FNS (NLO)	2	4	5	NNPDF3.0nnlo	Sherpa
	SHERPA FUSING 4FNS+5FNS (NLO)	2	3	5 (*)	NNPDF3.0nnlo	Sherpa
<i>NB:</i> V+HF is also the main	Alpgen + Py6 4FNS (LO)	-	5	4	CTEQ6L1	Рутніа v6.426
	Alpgen + Py6 (rew. NNPDF3.0lo)	-	5	4	NNPDF3.0lo	Рутніа v6.426
background for V+Higgs	MGAMC + Py8 5FNS (LO)	-	4	5	NNPDF3.0nlo	Рутніа v8.186
0 00	MGAMC + Py8 5FNS (NLO)	1	-	5	NNPDF3.0nnlo	Рутніа v8.186
measurements \Rightarrow crucial to		Z+bb				
have valiable MC simulation	Sherpa Zbb 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	Sherpa
have reliable MC simulation	MGAMC + Py8 Zbb 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	Рутніа v8.186

• Different levels of ME evaluation accuracy \Rightarrow different number of partons, LO, NLO

by S. Frixione et al. [IHFP 12 (2012) 061]

E.g. FxFx prescriptions

- Different Flavour Scheme used for PDF set ⇒ 4 FS in PDFs allows use of b-quark mass in ME, while 5FS allows resummation of large logarithm inside the PDF itself
- Different approaches for approximate use of HF quark mass in parton-shower (PS)

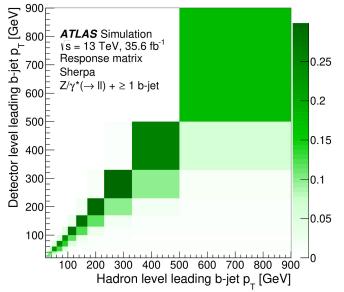

Key analysis components: selection & data-driven background

Main elements of the Z+b-jets signal candidate event selection:

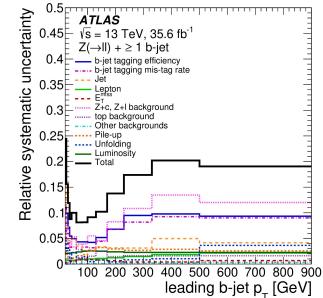
- 2 opposite charge light leptons (ee/ $\mu\mu$), with p_T>27 GeV, $|\eta|<2.5$, and 76<m_{II}<106 GeV
- Jets passing "cut" on MV *b*-tagging algorithm corresponding of 70% efficiency for b-jets
- $\geq 1 \text{ or } \geq 2 \text{ b-jets with } p_T > 20 \text{ GeV and } |\eta| < 2.5 \Rightarrow \text{measurement of } Z + \geq 1 \text{ b-jet and } Z + \geq 2 \text{ b-jets}$

Z+*jets background affected by large uncertainties would provide poor background subtraction ...*

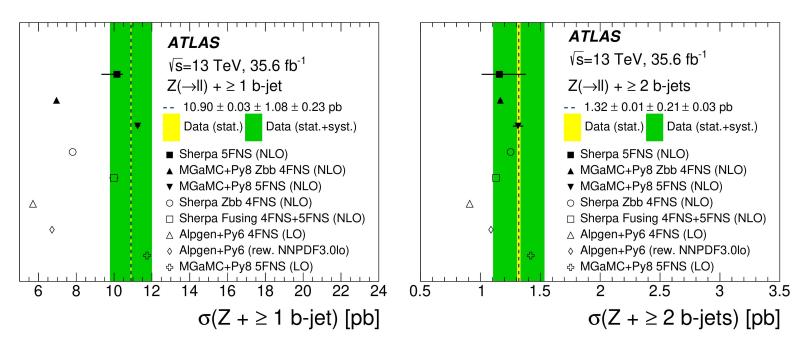
- ⇒ Data-driven multi-component template fit using MV discriminant binned according to *b*-tag purity cuts
- \Rightarrow extracted Z+c-jets and Z+light-jets then subtracted from data (together with other minor backgrounds)



7

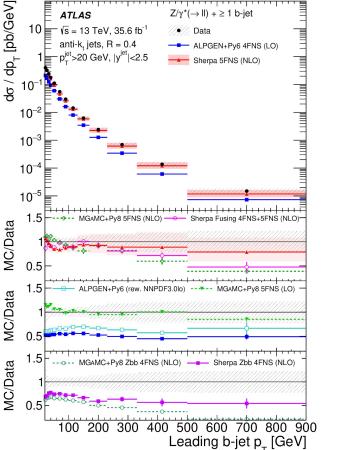

Correction to particle level (Unfolding) and systematic errors

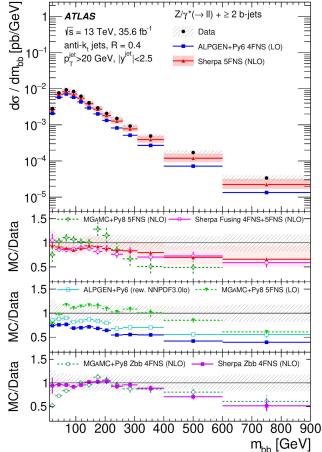
Data background subtracted events brought to particle-level correcting for efficiency and detector resolution effects using Z+b-jets signal MC, after application of b-jet efficiency calibration


E.g. resolution effect on *b*-jet p_T (unfolding with iterative Bayesian method [arXiv:1010.0632])

Main syst. uncertainties due to *b*-jet eff. calibration and background subtraction:

Z+≥1 b-jet and Z+≥2 b-jets inclusive cross-section results


- 4FS undershoots $Z + \ge 1$ b-jets in all configuration \Rightarrow closing a long lasting discussion!
- $Z + \ge 2b$ -jets uncertainties still too large to favour any of the more recent predictions

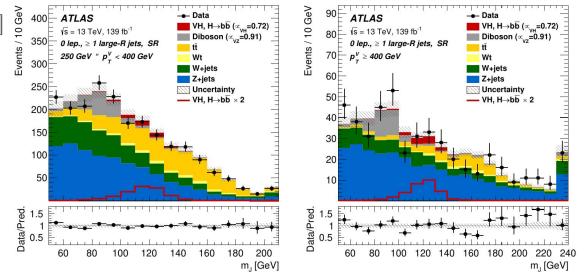

Differential cross-section measurements: high- p_T challenges

5FS predictions show reasonable agreement with data except in the very high-pT regime:

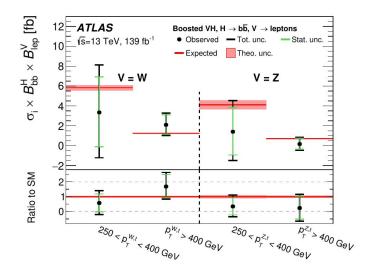
 \Rightarrow large uncertainties and tensions with data

Challenge for searches or other process test in such phase space...

10

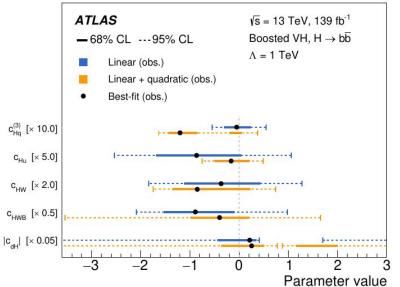

First glance to extreme high- p_T *b*-jets for Higgs measurements

Boosted regime, e.g. V p_T >250 GeV, very challenging (as seen) but may be more affected by BSM!


Vector boson (V=W or Z) plus Higgs associated production is the main analysis channel for the study of H \rightarrow bb properties because V leptonic decays allows trigger and background suppression. *Observation* of H \rightarrow bb in VH [arXiv:1808.08238] \Rightarrow now investigating differential cross section

A new analysis [arXiv:2008.02508]

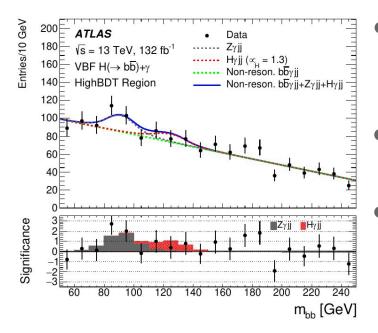
- Reconstruction of large radius *R=1.0* jets with two *b*-tagged sub-jets
- Two "differential" Vp_T bins


Boosted VH \rightarrow bb Interpretation in an EFT Framework

 \Rightarrow Also immediat probe of any strong BSM deviation $c_{H_{u}} \approx 10^{-10}$ in Effective Field Theory (EFT) coefficients: $c_{H_{u}} \approx 10^{-10}$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d} \frac{1}{\Lambda^{d-4}} \left(\sum_{i} c_{i}^{(d)} O_{i}^{(d)} \right)$$

Differential result \Rightarrow statistically limited & large V+b-jets systematic uncertainty, but prepares us for future much larger LHC Run 3 and HL-LHC datasets



12

Higgs VBF: measuring another rare production mode with *b*-jets

Higgs VBF production mode is even harder to reach because of very large multi-jet background

• Full Run 2 dataset allows a first glance using prompt photon emission for trigger and background suppression

- Boosted Decision Tree (BDT) used to further reduce multi-jet background
- Data-driven lineshape fit for extraction of non-resonant background
- First hints of $H \rightarrow bb$ presence in this channel:
 - \Rightarrow Signal significance 1.3 σ
 - \Rightarrow Cross section strength w.r.t. SM μ = 1.3±1.0

H

What's next?

Towards Run 3: higher precision for the Higgs boson and beyond

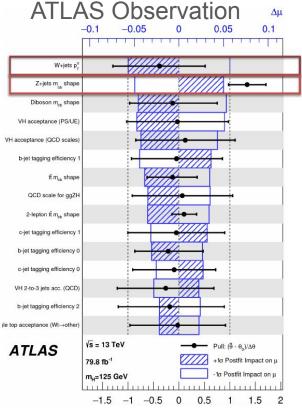
What's next?

Run 3 is coming...

- Further effort in *b*-tagging algorithms optimization also thanks to a new PhD student (*M. Tanasini*, welcome!)
- Current analyses are paving the way towards higher precision measurements in Run 3:
 - \rightarrow Further optimized *b*-jet identification algorithms
 - \rightarrow Extended dataset statistics
 - \rightarrow Largely Improved MC simulation
- QCD theory predictions have comparable level of precision to measurement
 ⇒ it seems now at hand to bring measurements to the next level of precision
- Need to push precision for $H \rightarrow b\bar{b}$ Yukawa measurement and VH couplings beyond "simple" observation in order to be sensitive to BSM

Extra slides & Backup Material

References to recent papers with main ATLAS GE contribution


Z+b-jets differential measurement: https://arxiv.org/abs/2003.11960

VH→ bb boosted: <u>https://atlas-glance.cern.ch/atlas/analysis/papers/details.php?id=12369</u> <u>https://arxiv.org/abs/2008.02508</u>

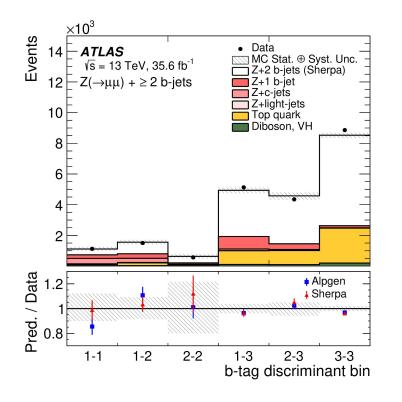
Hbb VBF(+photon): <u>https://atlas-glance.cern.ch/atlas/analysis/papers/details.php?id=12805</u> <u>https://arxiv.org/abs/2010.13651</u>

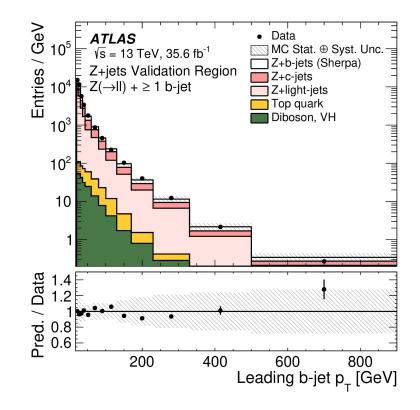
b-tag performance: <u>https://atlas-glance.cern.ch/atlas/analysis/papers/details.php?id=11805</u> <u>https://arxiv.org/abs/1907.05120</u>

Impact of V+b-jets uncertainties on VHbb

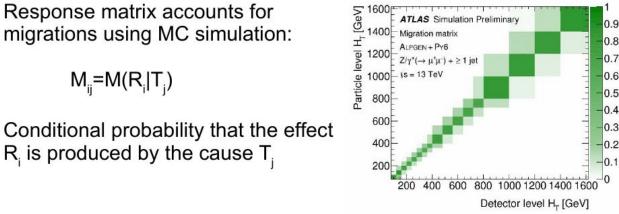
https://arxiv.org/abs/1808.08238

CMS Observation


Uncertainty source	$\Delta \mu$		
Statistical	+0.26	-0.26	
Normalization of backgrounds	+0.12	-0.12	
Experimental	+0.16	-0.15	
b-tagging efficiency and misid	+0.09	-0.08	
V+jets modeling	+0.08	-0.07	
Jet energy scale and resolution	+0.05	-0.05	
Lepton identification	+0.02	-0.01	
Luminosity	+0.03	-0.03	
Other experimental uncertainties	+0.06	-0.05	
MC sample size	+0.12	-0.12	
Theory	+0.11	-0.09	
Background modeling	+0.08	-0.08	
Signal modeling	+0.07	-0.04	
Total	+0.35	-0.33	


https://arxiv.org/abs/1808.08242

ATLAS VH boosted

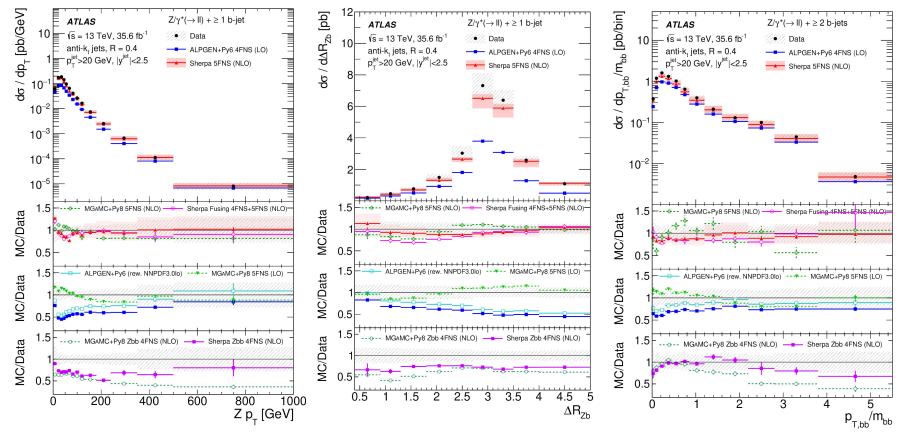

Source of u	Avg. impact	
Total	0.372	
Statistical	0.283	
Systematic	0.240	
Experiment	al uncertainties	
Small-R jets	0.038	
Large-R jets	0.133	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.007	
Leptons		0.010
	<i>b</i> -jets	0.016
b-tagging	c-jets	0.011
	light-flavour jets	0.008
	extrapolation	0.004
Pile-up	0.001	
Luminosity	0.013	
Theoretical	and modelling unce	rtainties
Signal		0.038
Background	ls	0.100
$\hookrightarrow Z + jets$	0.048	
$\hookrightarrow W + jets$	0.058	
$\hookrightarrow t\bar{t}$	0.035	
\hookrightarrow Single to	0.027	
→ Diboson	0.032	
← Multijet	0.009	
MC statistic	0.092	

Data driven Z+jets background and validation

Iterative Unfolding with Bayesian method

How to extract "prediction-unbiased" probability using iterative Bayesian unfolding:

• Bayes theorem:


 $M(T_i|R_j) = M(R_i|T_j) P_0(T_j) / Sum_I M(R_i|T_I) P_0(T_I)$

 Particle level MC used as initial prior, P₀(T_j), to determine a first estimate of the unfolded data distribution:

 $T_j = Sum_i M(T_j | R_i)R_i$

• In each further iteration the estimator of the unfolded distribution from previous iteration is used as a new prior

Other Z+b-jets differential distributions

