

Energy partition in solar flares: the results from RHESSI and the prospects with STIX

A. Warmuth¹, F. Schuller¹, G. Mann¹, S. Krucker^{2,3}, E. C. M. Dickson², A. F. Battaglia^{2,4}, H. Xiao²,
S. Maloney^{5,6}, M. Battaglia², G. Hurford², A. Veronig⁷, J. Saqri⁸ and the STIX team

¹Leibniz Institute for Astrophysics Potsdam (AIP) ²University of Applied Sciences and Arts Northwestern Switzerland ³Space Sciences Laboratory, University of California ⁴ETH Zürich ⁵Trinity College Dublin ⁶Dublin Institute for Advanced Studies ⁷University of Graz

08.07.2021 / Energy partition in solar flares: the results from RHESSI and the prospects with STIX

Solar flare energetics: nonthermal and thermal components

- energy in nonthermal electrons
- energy in nonthermal ions
- thermal energy of hot plasma
- radiative energy losses
- conductive energy losses
- kinetic energy in plasma flows
- gravitational energy of plasma

- super-hot plasma (T > 25 MK) hot plasma (T = 10 - 25 MK) conduction (T < 10 MK) cool plasma (T << 10 MK)
- standard scenario: energy input by nonthermal particle beams \rightarrow nonthermal input has to balance thermal requirements

Observational constraints

- HXR: RHESSI (2002-2018)
 - HXR imaging and spectroscopy
 - 3 keV 18 MeV, 1 keV resolution
 - temperature sensitivity > 10 MK
 - thermal & nonthermal spectral fitting
 - thermal source volumes and footpoint areas
- SXR: GOES
 - isothermal fits of fluxes in two channels
 - temperature sensitivity 4-25 MK

- EUV: SDO/AIA (since 2010)
 - EUV images in six Fe emission lines
 - reconstruction of DEM distribution
 - thermal source volumes

- Bolometric: SORCE/TIM, SOHO/Virgo
 - total radiated energy
 - proxy for total energy released

Statistical studies of energy partition in the RHESSI era

- electrons can account for thermal plasma *(Emslie et al. 2012)*
- electrons cannot account for thermal plasma (Inglis & Christe 2014)
- electrons can account for thermal plasma only in stronger events (Warmuth & Mann 2016)
- electrons can easily account for thermal plasma (Stoiser et al. 2009, Aschwanden et al. 2015/2016/2017)
- → discrepancies resulting from limitations in these studies (Warmuth & Mann 2020)

Peak thermal energy

- correlation with GOES peak flux
- discrepancies by up to an order of magnitude
- bolometric energy shown as a proxy for total released energy
- reasons for discrepancies?

Thermal source voulumes

 volumes derived from RHESSI and AIA are consistent

Radiative losses of hot plasma normalized by peak thermal energy

 radiative losses are energetically important for larger events

Conductive losses of hot plasma normalized by peak thermal energy

- conductive losses energetically important, especially for smaller events
- however, conduction may be suppressed

Energy in nonthermal electrons

- energy input correlates with GOES class
- large discrepancies between studies
- partly orders of magnitude larger than bolometric energy
- problem: low-energy cutoff

Nonthermal fraction: nonthermal / peak thermal energy

- nonthermal energy larger than thermal energy in most events and studies
- energy in nonthermal ions not considered

Nonthermal fraction: nonthermal / bolometric energy

- sufficient energy to power thermal flare component only in larger events (X class)
- additional energy transport mechanism required to explain bolometric loss (conduction, waves)

AIP

Explanation for different results on energy partition

- electrons can account for thermal plasma (Emslie et al. 2012)
- electrons cannot account for thermal plasma (Inglis & Christe 2014)
- electrons can account for thermal plasma only in stronger events (Warmuth & Mann 2016)
- electrons can easily account for thermal plasma (Stoiser et al. 2009, Aschwanden et al. 2015/2016/2017)

energy partition changing with flare importance

nonthermal energy overestimated

Spectrometer/Telescope for Imaging X-rays (STIX)

Warmuth et al. 2020, Solar Phys. 295, 90

B6 flare seen from from 0.5 AU

Battaglia et al. 2021, A&A, in press

08.07.2021 / Energy partition in solar flares: the results from RHESSI and the prospects with STIX

B6 flare: isothermal & thick-target fit

08.07.2021 / Energy partition in solar flares: the results from RHESSI and the prospects with STIX

Conclusions

- largest uncertainties in energy partition: determination of DEM distribution and low-energy cutoff
- bolometric energy provides an important constraint on both thermal and nonthermal energetics
- thermal losses of hot plasma are energetically important
- decreasing nonthermal fraction in smaller events
- need for additional heating and energy transport mechanisms

Outlook

- application of warm-target model to get upper limit on energy in accelerated electrons
- prospects for more reliable results on partition in microflares with STIX