Quasi-periodic energy release in a three-ribbon solar flare

Outline of the presentation

- Brief introduction to QPPs in solar flares
- General overview of a three-ribbon M1.1 flare studied (SOL2012-07-05T06:49)
- Spectral analysis of flare's X-ray emission and founding of 'hidden' QPPs
- Energetics of QPPs
- Dynamics of QPP sources
- Comparison with a homologous M6.1 flare (SOL2012-07-05T11:39)
- Magnetic structure of the flare region and the QPP production site
- Discussion of possible mechanisms
- Summary
- Additional materials

QPP definition(s) & properties

There is no strict mathematical definition of QPPs

Definition A: a sequence of at least 3 emission intensity bursts with similar time intervals between successive peaks **Definition B:** there's presence of a statistically-significant frequency peak above noise level (in Fourier, wavelet, EMD etc. spectra)

- Occurrence: in many (~30-90%) but not in all flares (technique, sensitivity matter?) recent results
- Flare types: possibly all (impulsive, long-duration, microflare, confined, eruptive, two-ribbon, circular-ribbon, three-ribbon?)
- Flare phases: all (pre-flare, impulsive, decay)
- Wavebands: from radio emission (~MHz) up to gamma-rays (MeV)
- Periods: from milliseconds to tens of minutes
- Number per flare: from a few (3-4) to dozens (usually, ~4-10 in HXR & MW)
- Modulation depths: from a few % to almost 100%
- Some special characteristics: a) non-harmonicity

b) non-regularityc) multi-periodicityd) multi-timescale

Especially for QPPs of non-thermal emissions

Why study QPPs?

- Quasi-periodic (or oscillatory) processes are ubiquitous and always attractive
- The origin of QPPs is not known yet despite more than 10 mechanisms have been proposed
- Flare models should naturally explain the presence of QPPs and their properties, since QPPs accompany a large fraction (~30-90%) of solar flares (and are found in stellar flares too)
- QPPs can be used as a diagnostic tool for physical properties of solar flare regions if their mechanism is confidently identified
- One can diagnose stellar flare regions with QPPs relying on solar-stellar analogies (if proved)

QPPs were found in two-ribbon

& circular-ribbon flares

Below we present an example of QPPs in a three-ribbon flare

Here we analyze M1.1 three-ribbon solar flare on 5-Jul-2012, 06:49 UT

Fitting of flare X-ray spectrum with different models. I.

s-1)

Flux deriv. (watts m⁻²

Model fit quality

Vth

QPPs with P = 54 ± 13 s in T of "super-hot" (T~30-50 MK) plasma component

or QPPs (less pronounced) in spectral parameters of nonthermal electrons

Note: non-thermal e- spectral index is very high, i.e. HXR spectrum is very soft - possibly it is too unrealistic (see also p. 9)

9

Check for presence of QPPs in radio emission

 There are some signatures of these QPPs in microwaves (although no peak-to-peak matching)

 There are no QPPs in decimeter-meterdecameter wavelength ranges, e.g. there are no type-III bursts – against presence of ebeams (no access to 'open' field lines or too weak?)

Parameters of hot and super-hot thermal plasmas

Total thermal energy during QPPs: Tot(E_th1) ~ $(2.7\pm0.1)\times10^{30}$ erg Tot(E_th2) ~ $(5.7\pm0.7)\times10^{29}$ erg

Total release of magnetic energy: $\Delta Tot(B) \sim 8x10^{30} \text{ erg}$

 $\Delta Tot(B) > Tot(E_th1) > Tot(E_th2)$

Thermal energy of one pulsation: <E_th1_1QPP> ~ (3.8±0.2)×10²⁹ erg <E_th2_1QPP> ~ (0.8±0.1)×10²⁹ erg - comparable to energy of a microflare

Energy loss by e- in X-ray sources: <E_loss_th1_1QPP> ~19.2 ±0.8 keV <E_loss_th2_1QPP> ~6.3 ±1.4 keV

Are these QPPs - RHESSI artifact? Most probably - no!

Inglis+ (2011, AA)

Nutation of rotating RHESSI SC can cause artificial QPPs with P~70-80 s

-1000

004 00:47:59.809 - 6-Nov-2004 00:58:00.30 Spin Axis: 265.27. -178.67 arcse 1) 2) 3) 2 -500 500 Heliocentric X (arcsec) Ŀ 10 20 40 ູດ arcse 400 τĵ .300 1288

Properties of QPPs in the flare studied:

- No visible QPPs in count rates (as expected in case of the artifact)
- QPPs of T (EM or e- spectral index) don't have stable period opposite to pointing period (mean periods differ: 75 s vs. 54 s)

QPPs are out of phase with pointing of RHESSI imaging axis

Dynamics of X-ray source during the flare

1700 A 1600 A 94A Ρ1 P2 Ρ3 P4 Ρ5 P6 Ρ7

> 450 460 X (orcsec)

430

440 450 460 X (arcsec) 450 X (orcsec) 6-12 keV 12-18 keV

Systematic 'displacement' of X-ray source from East to West during QPPs

Spread of flare EUV loop system from East to West during QPPs

Dynamics of X-ray source during the flare

Dynamics of X-ray source during QPPs

Source displacement: dr=1867±1021 km dr_{par}=1793±997 km dr_{per}=483±306 km/s

Source velocity: v=36±21 km/s v_{par}=34±21 km/s v_{per}=9±7 km/s

Very slow displacement:

v << **v**_s << **v**_A (<u>as usual for flares</u>) see e.g. S.Kuznetsov+ (2016, SoPh)

(a) 6-12 keV 8.0×10³ 6.0×10³ 4 0×10³ 2.0×103 10 Time (min since 06:49:00 UT 05-Jul-2012) SDO HMI_FRONT2 6173 5-Jul-2012 06:44:10.900 UT (b) -335 (arcsec) -345 -350 -355 430 440 450 460 X (arcsec)

 $V_{s}^{0.17\times(T_{[K]})^{0.5}}$ 170-1320 km/s $v_{A}^{22B}_{[G]}/(n_{[10]})^{0.5}$ 350-6600 km/s (T~1-60 MK, B~50-300 G, n~10¹⁰-10¹¹)

Comparison with homologous M6.1 flare (~5h after M1.1) Time profiles

We compare the M1.1 flare with a homologous M6.1 flare happened ~5h later in the same NOAA AR 11515

Comparison with homologous M6.1 flare X-ray source dynamics

- SXR source dynamics in M6.1 flare is much less "systematic" than in M1.1 flare
- And we don't see clear QPPs in fit spectral parameters of M6.1 flare
- Possibly, "systematicity" of motion along a particular direction (e.g. PILs) is an important factor for the quasi-periodicity to be observed

Magnetic structure of the flare region

Observations

(SXR sources are shown by thick colored contours)

NLFFF extrapolation

(FL are started from SXR source locations)

Magnetic structure of the flare region: closer view

X-ray sources are shown by colored semi-transparent spheres

Magnetic structure of three-ribbon flares

- Magnetic field is not translationally symmetric along PILs (essentially 3D, not 2.5D)
- Very strong shear (up to ~85 deg);
- Flux rope is expected along PILs, rather than null line as in Wang+

Schematic picture from Wang+ (2014, ApJ) (for two others homologous (?) flares, M1.3 and C9.2, in the same active region, a day later, on 6 July 2012)

Why $v < v_s < v_A$?

Let's check one possible interpretation based on slow-mode waves as a trigger

From Inglis & Dennis (2012, ApJ) based on model by Nakariakov & Zimovets (2011, ApJL) $P_m^{(L/\cos\alpha)/v_s}$

 v_s ~200 km/s (for T_b~1.5 MK, i.e. slow wave propagates on background pre-flare plasma)

 P_m ~56 s which is consistent with P_{obs} =54±13 s

 $\delta d^{L*tg} \alpha^{5}$ Mm - around 2-to-5 times larger than the observed one (dr_{par}=1793±997 km)

Incorporation of magnetic shear leads to higher δd , which makes the interpretation with this model even more difficult

One needs to suggest other mechanisms to satisfy available observations (see next page) 21

Other possible mechanisms of the observed QPPs (not all) Proposed for 2-ribbon flares, but could be adopted for the 3-ribbon event

Asymmetric flux-rope eruption

Grigis & Benz (ApJL, 2005) R.Liu+ (ApJ, 2009) Zimovets+ (JASTP, 2018) Flapping oscillations of current sheet

Artemyev & Zimovets (SPh, 2012)

Thermal instability of current sheet

Ledentsov & Somov (AL, 2016) Ledentsov (2021, SPh)

22

Summary

- We found QPPs (with P = 54 ± 13 s) in parameters of super-hot plasma (T~30-50 MK) or non-thermal electrons (less probable) in a three-ribbon flare
- QPPs are not obvious in broad band count rates (or emission light curves) that could be due to much smaller (~10² times) emission measure of super-hot plasma than of hot (T~16-20 MK) plasma
- There is systematic slow displacement of SXR source during QPPs along a separator or asymmetric MFR above a middle flare ribbon with v<v_s<v_A (which is usual for solar flares, and yet not clear why)
- We can't easily interpret the observations with modification of the slow-mode wave model in two-ribbon flares
- Other mechanisms are possible and awaiting verification (we are open for discussions)

Thank you!

Additional materials

No pronounced QPPs in separate RHESSI detectors' count rates

Energetics of thermal plasma and non-thermal electrons in vth + thick2 & thin2 model

2vth model parameters

Variable	Value	Error	Units
<em1></em1>	0.088	0.014	x10 ⁴⁹ cm ⁻³
<em2></em2>	0.0013	0.0012	x10 ⁴⁹ cm ⁻³
<em1 em2=""></em1>	67.4	62.8	
<t1></t1>	1.8	0.1	keV
<t2></t2>	3.6	0.6	keV
<t1 t2=""></t1>	0.5	0.1	
<\$>	24.1	5.1	x10 ¹⁶ cm ²
<n1></n1>	87.6	19.9	x10 ⁹ cm ⁻³
<n2></n2>	10.2	6.4	x10 ⁹ cm ⁻³
<n1 n2=""></n1>	10.4	7.0	
<e1_stop></e1_stop>	19.2	0.8	keV
<e2_stop></e2_stop>	6.3	1.4	keV
<eth1></eth1>	38.2	1.6	x10 ²⁸ erg
<eth2></eth2>	8.2	1.0	x10 ²⁸ erg
<eth1 eth2=""></eth1>	4.7	0.6	
Tot_Eth1	267.1	11.1	x10 ²⁸ erg
Tot_Eth2	57.5	6.9	x10 ²⁸ erg
Tot_Eth1/	4.7	0.6	
Tot_Eth2			

vth + thick2 model parameters

Variable	Value	Error	Units
	0.093	0.014	x10 ⁴⁹ cm ⁻³
<t></t>	1.8	0.1	keV
<s></s>	24.1	5.1	x10 ¹⁶ cm ²
e- <flux></flux>	1.46	0.98	x10 ³⁵ e- s ⁻¹
e- <low delta=""></low>	8.6	0.6	
e- <e_break></e_break>	33000	0	keV
(fixed)			
e- <high delta=""></high>	6	0	
(fixed)			
e- <lec></lec>	19.1	1.4	keV
e- <hec> (fixed)</hec>	32000	0	keV
<nth></nth>	90.4	24.1	x10 ⁹ cm ⁻³
<nnth></nnth>	1.3	0.9	x10 ⁹ cm ⁻³
<nth nnth=""></nth>	68.4	0.9	
<eth_stop></eth_stop>	19.5	0.8	keV
<enth_stop></enth_stop>	2.3	0.6	keV
<eth></eth>	39.3	1.9	x10 ²⁸ erg
<enth></enth>	27.1	2.2	x10 ²⁸ erg
<eth enth=""></eth>	1.5	0.1	
Tot_Eth	275.2	13.6	x10 ²⁸ erg
Tot_Enth	189.6	15.5	x10 ²⁸ erg
Tot_Eth/ Tot_Enth	1.5	0.1	

vth + thin2 model parameters

Variable	Value	Error	Units
	0.087	0.013	x10 ⁴⁹ cm ⁻³
<t></t>	1.8	0.1	keV
<s></s>	24.1	5.1	x10 ¹⁶ cm ²
e- <norm factor=""></norm>	0.34	0.16	x10 ³⁵ e- cm ⁻² s ⁻¹
e- <low delta=""></low>	6.4	0.6	
e- <e_break></e_break>	33000	0	keV
(fixed)			
e- <high delta=""></high>	6	0	
(fixed)			
e- <lec></lec>	17.6	1.0	keV
e- <hec> (fixed)</hec>	32000	0	keV
<nth></nth>	87.1	19.1	x10 ⁹ cm ⁻³
<nnth></nnth>	0.74	0.44	x10 ⁹ cm ⁻³
<nth nnth=""></nth>	118.4	0.4	
<eth_stop></eth_stop>	19.1	0.8	keV
<enth_stop></enth_stop>	1.7	0.4	keV
<eth></eth>	38.8	1.6	x10 ²⁸ erg
<enth></enth>	15.0	0.3	x10 ²⁸ erg
<eth enth=""></eth>	2.6	0.1	
Tot_Eth	271.5	11.2	x10 ²⁸ erg
Tot_Enth	104.6	1.8	x10 ²⁸ erg
Tot_Eth/ Tot_Enth	2.6	0.1	

Model fit quality for M6.1 flare

