Constraints on the acceleration region of type III radio bursts from radio and X-ray signatures

Sophie Musset ^(1,2), Eduard Kontar ⁽¹⁾, Nicole Vilmer ⁽³⁾, Lindsay Glesener ⁽⁴⁾, Abdallah Hamini ⁽³⁾

- (1) University of Glasgow
- (2) ESTEC, European Spatial Agency
- (3) LESIA, Observatoire de Paris, PŠL Research University
- (4) University of Minnesota

RHESSI-20 – July 8th 2021

Diagnostics of solar energetic electrons

Solar flares = sudden energy release in the solar corona

Vilmer et al. (2002

Particles propagating upward 'escaping the solar atmosphere' → Coherent radio emission with frequency ∝ plasma frequency

Magnetic reconnection → plasma heating, particle acceleration...

Particles propagating downward → Bremsstrahlung emission in X-ray

X-ray diagnostics of energetic electrons

Typical X-ray observations of solar flares (*Krucker et al 2008*)

X-ray diagnostics → plasma conditions + distribution of energetic electrons near the acceleration site (flare site)

Solar type III radio bursts

Typical type III burst observation (Reid and Ratcliffe, 2014)

Coherent plasma emission: frequency \propto plasma frequency

Plasma frequency \propto (plasma density)^{1/2}

Negative frequency drift over time = electron beam propagating upwards / escaping the solar atmosphere

Type III radio bursts → trace the propagation of energetic electron beam in solar atmosphere and heliosphere

Radio spikes

Narrow-band, short-lived emissions, observed at high frequencies (0.8-8 GHz)

- Timescales ~ tens of milliseconds
- Bandwidth ~ a few % of the center frequency

(Benz et al, 1992; Paesold et al, 2001)

Often associated with type III radio bursts

• With frequencies slightly > type III starting frequencies

(Benz et al, 1992)

Radio spikes are the radio signatures with the **higher association rate with HXR** *(e.g. Aschwanden & Guedel 1992)*

No distinct temporal correlation between X-ray flux and radio spikes (Benz, 1985; Benz et al, 2002)

• Sources of spikes displaced from HXR souces (Battaglia & Benz, 2009)

→ Spikes closely related with the acceleration/injection region of energetic electrons

Radio and X-ray timing Example of the event on Sept. 9 2020

Start lime (09-Sep-17 11:00:00)

Radio spikes as a signature of the acceleration process

Radio spikes density correlate with X-ray non-thermal emission of energetic electrons

- \rightarrow Radio spike emission linked to the acceleration process
- \rightarrow Fragmentation of radio emission linked to the fragmented nature of particle acceleration

(Musset et al, submitted)

Geometry of the event

Electron beam size at its source

Lower limit on the plasma density from X-rays: just above the starting frequency of radio spikes and type III radio bursts X-ray imaging and spectroscopy

X-ray emitting source size: $0.12 \operatorname{arcmin}^2$ Plasma EM = $5.3 \times 10^{47} \operatorname{cm}^{-3}$ \rightarrow Density of $5 \cdot 13 \times 10^9 \operatorname{cm}^{-3}$ in the volume

Spectral index of the non-thermal electrons: 4.0 Number of accelerated electrons: $2x10^{33}$ e/s

(Musset et al, submitted)

Radio source sizes in the higher corona

LOFAR imaging of the type III radio burst emission at lower frequencies (30-48 MHz)

Frequency evolution is consistent with the propagation of a beam of energetic electrons

 \rightarrow Evolution of the radio source sizes with frequency + Density model

$$n(r) = 4.8 \times 10^9 \left(\frac{R_{\odot}}{r}\right)^{14} + 3 \times 10^8 \left(\frac{R_{\odot}}{r}\right)^6 + 1.4 \times 10^6 \left(\frac{R_{\odot}}{r}\right)^{2.3},$$

(Alcock 2018)

Evolution of the radio source sizes with height

Radio sources are larger and increase in size faster than expected from only the expansion of magnetic flux tubes → Importance of radio-wave scattering on density fluctuations

Conclusion & perspectives

In this event, non-thermal X-ray emission and type III radio bursts are particularly well correlated

→ Enable to characterize the solar source of escaping beams of electrons responsible for low-frequency type III radio bursts

Decimetric radio spikes correlate with X-ray non-thermal flux on fine time scales
→ Indicates that their emission process is linked to the acceleration region
→ Fragmentation of radio spike emission could be a signature of the fragmentation of the acceleration process itself

The combination of X-ray and radio diagnostics of energetic particles in solar events is a powerful tool to investigate particle acceleration and transport in the corona.