II Seminario Nazionale Rivelatori Innovativi 18-22 ottobre 2010 INFN – Sezione di Trieste

Detectors for mammography: Introductory Seminar

Fulvia Arfelli University of Trieste and INFN Trieste, Italy

Collaboration

- F. Arfelli, R. Longo, E. Castelli
 - Physics Departement, University of Trieste, Italy
- L. Rigon, E. Vallazza, R. Chen, G. Orzan, M. Bari
 INFN, Trieste, Italy
- R.-H. Menk, D. Dreossi
 - Sincrotrone Trieste ScPA (ELETTRA), Trieste
- B. Schmitt, A. Bergamaschi
 - Paul Scherrer Institut, Villigen, Switzerland

PAUL	SCHE	RRER	INSTIT	UT
	F		Ð	

Outline

- Mammography with Synchrotron Radiation
 - The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline
 - The mammography clinical program
- The PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiation) detector
 - Requirements of a digital detector for mammography
 - PICASSO microstrip silicon detector characteristics
 - Single photon counting electronics
 - Imaging results: planar and tomographic imaging
- Conclusions

Characteristics of synchrotron radiation (SR)

- High x-ray intensity on a broad energy range
 - Tunable monochromatic beam
 - Choose the optimum energy for a specific examination
 - Dose optimization/reduction
 - No beam hardening effects (in tomography)
- Laminar beam geometry (the beam is naturally collimated)
 - Images are acquired by scanning the object/patient through the fan beam
 - High scattering rejection
- Small source size and large source-to-sample distance
 - High degree of lateral coherence
 - Phase-sensitive techniques

Suitable for mammography Improving image and diagnostic quality Dose reduction

The SYRMEP beamline (I)

- Source size ~ 1.1 (horizontal) x 0.1 (vertical) mm²
- Divergence: ~ 7 mrad (horizontal) x 0.2 mrad (vertical)
- Laminar beam: 4 x 150 mm² (exp hutch) 4 x 210 mm² (patient room)
- Flux at 17 keV (Elettra operated at 2.4 GeV, 140 mA ring current):10⁸ ph/mm²/s

Vertical scan of the sample through the beam

Examination room

Patient positioning

Size and shape of the opening are consistent with the chest anatomy

Mammography with SR: clinical program

- Our goal
 - Improving the diagnostic quality of conventional mammography without increasing the dose delivered to the patient
- 3 Phase program
 - Phase I: Phase contrast MSR with screen-film system
 - Completed with 71 patients (2006-2009)
 - Encouraging results: MSR outperforms conventional mammography
 - Phase II: Phase contrast MSR with digital detector
 - Feasibility study by using FUJIFILM Fuji CR for Mammography PROFECT ONE
 - Development of our custom digital detector (PICASSO)
 - Phase III: new techniques (CT and/or tomosyntesis)

Phase Contrast Imaging

- Phase shift of X-ray wavefront when crossing a detail
- Interference pattern between refracted and unrefracted waves produces intensity variations on the detector (if the source is coherent)
- Sample-to-detector distance (about 2 m) is optimized to detect the interference pattern

PICASSO Digital Detector Requirements

- High efficiency
 - Low dose
- High spatial/contrast resolution
 - Detect micro-calcifications/nodules
 - Detect phase contrast effects
- Wide dynamic range
- Fast Rate Capabilities and Read-Out
 - Take a mammogram in a few seconds
- Laminar geometry
 - Matching beam cross section
 - Scatter Rejection

The silicon micro-strip detector: "edge-on" geometry

- Advantages of "edge-on" geometry:
 - Matching the laminar geometry of the beam with a natural pixel array
 - High absorption efficiency
- Problems:
 - Dead (undepleted) volume in front of the sensitive region that reduces the detection efficiency (~70-85% @ 20keV)

Single Photon counting

• Advantages

- The quantum nature of the information carried by the photon beam is preserved (only Poisson noise, no quantization error typical of charge integration devices)
- High (virtually infinite) dynamic range
- Challenges
 - Can we have a uniform response over all channels?
 - Can we have a low noise AND high acquisition speed (~MHz)?
 - Can we have all channels (pixels) counting simultaneously at full rate (when contrast is in the order of 1%)?

Single Photon Counting

- Each strip is bonded to a channel of the read-out electronics. Each channel features:
 - Charge sensitive preamplifier
 - Shaper
 - Discriminator
 - Counter

A. Mozzanica et al ,Nuclear Instruments and Methods in Physics Research A 607 (2009) 250–252

PICASSO Single Photon Counting: Mythen-II

- Mythen-II ASIC developed by detector group of the Paul Scherrer Institut (PSI) for photon counting ASIC for powder diffraction studies
- Widely used powder diffraction detectors and other applications
 - SLS, Australian Synch, DESY, Diamond, Spring-8
- Characteristics:
 - 0.25 µm UMC technology
 - 128 channels
 - 50 µm pitch
 - 24-bit counter
 - low noise preamplifier (noise about 230 e-)
 - 6-bit threshold trim DAC to obtain uniform response over all channels
 - Single photon counting at 1 MHz

Bergamaschi, A. et al., Nucl. Instrum. Meth. A , 2009. 604. 1-2. 136-139 Mozzanica, A. et al., Nucl. Instrum. Meth. A , 2009. 607. 1. 250-252

6-bit threshold trim DAC

- Equalizing the response of the different channels
 - Without trim DAC

- With trim DAC

Threshold scan

• Pencil beam 10 µm wide to avoid charge sharing effects

Rigon, L. et al., Nucl. Instrum. Meth. A , 617 (2010) 244-245

Charge sharing

Mozzanica, A. et al., Nucl. Instrum. Meth. A , 2009. 607. 1. 250-252 A.Bergamaschi et al, J. of Synchrotron Rad., , 2010, 17, 653-668

PICASSO Counting Rate Capabilities

- Compatible with a paralyzable model with
 - Efficiency 65.1 % (compatible with ~ 200 μ m dead zone)
 - Dead Time 0.16 μs
- Almost negligible losses (< 10%) up to 1.2 MHz

Read-out Electronics

Vallazza, E. et al. Proceedings of 10th ICATPP Conference, 700-705 World Scientific Publishing Co.

Read-out Electronics (II)

 Designed an improved version of the VME I/O with local memory board to buffer the frames during the scan

The PICASSO detector assembly

- A 4-layer detector to successfully exploit the beam size
- Tight requirements
 - coverage of the beam width (210 mm)
 - silicon detector planarity about 10-20 μm
 - very small spacing between layers
- Our solution
 - modular design
 - displacement of the modules along the beam propagation direction

Vallazza, E. et al. Proceedings of 10th ICATPP Conference, 700-705 World Scientific Publishing Co. Rigon, L. et al. IEEE Nuclear Science Symposium Conference, 2008, 1536

Modular design

Single layer full size prototype

- Single layer 210 mm silicon detector
 - Use of two modules (120 mm+90 mm), 33 ASICs (4224 channels)
 - PCB hosts 3 Altera Cyclone-II FPGA for ASIC control
 - Assembled and bonded at Mipot SpA (Cormons, Italy)

Double layer prototype

- Double layer 210 mm silicon detector
 - Detectors glued to the glass bar and fixed in the aluminum frame
 - Assembly system developed by the mechanical workshop of INFN
 - Tested at the SYRMEP beamline

Wire Phantom

• Wire Phantom + 3cm thick Lucite slab, 17 keV

Film-screen system Air dose 1.5 mGy PICASSO 150 µm scan step Air dose 0.9 mGy PICASSO 50 µm scan step Air dose 2.53 mGy

Experimental results: CD Phantom detail

ACR (American College of Radiology) Phantom

Rigon, L. et al. Nucl. Instrum. Meth. A 2009, 608. 1. S62-S65

19 keV
Scanning step
50 μm
0.2 s per step
Air Entrance dose
8.5 mGy

Gammex RMI 160 "Ackermann" Phantom detail

- Phantom + 30 mm Plexiglas acquired at 19.5 keV
 - Scanning step 100 µm, 0.100 s per step
 - Air Entrance dose 1.75 mGy

Top layer Raw image Bottom layer Raw image Summed and normalized image

In vitro breast tumor tissue

Agfa Image Plate mammographic system

PICASSO single layer detector

Ro/Ro Anode/Filter 7 mAs, 28 kVp Air entrance dose ~ 0.6 mGy Energy 23 keV Scanning step 200 µm Exposure time 80 ms/step Air entrance dose ~ 0.4 mGy

Custom-made PhC-Tomography Breast Phantom

- Shape: to mimic uncompressed breast
 - Diameter: 8-12 cm
- Composition
 - Glycerol (same attenuation as glandular tissue)
 - 3 Delrin rods (same attenuation as breast-tumor tissue)
 - Quartz microspheres (diameter 100-800 µm) to mimic microcalcifications

90 projections Pixel aperture: 100 µm Air entrance Dose: 57.6 mGy

Breast Tissue Tomography

- Characterization and accurate measure of linear attenuation coefficient
 of breast tissue
 - Slice reconstructed from 2400 projections on 180° (angular step 0.075°)
 - Energy 23 keV
 - Exposure time 1s per projection
 - High dose

Chen, R. C. et al. Phys. Med. Biol., 55 (2010) 4993- 5005

Concluding Remarks

- The SYRMEP group is operating a beamline dedicated to *in-vivo* mammography at ELETTRA . In the first clinical project using a conventional screen-film system.
- The PICASSO collaboration has developed a silicon microstrip detector. Phantom and *in-vitro* studies have shown:
 - High efficiency
 - Remarkable spatial and contrast resolution
 - Single photon counting capability up to ~1 MHz
 - Excellent uniformity over ~ 2 x 4200 channels counting simultaneously
- Future Work
 - Construction of the 4 layer detector
 - Implementation of the new TCP-IP based read-out electronics
 - Integrating the PICASSO system on the patient beamline

References

- F. Arfelli et al., Radiology **215** 286 (2000)
- F. Arfelli et al., Phys. Med. Biol. 43 (1998) 2845
- A. Abrami et al., Nucl. Instrum. Meth. A 548 221 (2005)
- D. Dreossi et al., Nucl. Instrum. Meth. A 576 (2007)
- D. Dreossi et al., Eur. J. Radiol. 68 S58 (2008)
- A. Bergamaschi et al., Nucl. Instrum. Meth. A 604 136 (2009)
- A. Mozzanica et al., Nucl. Instrum. Meth. A 607 250 (2009)
- E. Vallazza et al., Proc. of 10th ICATPP Conference, World Scientific Publishing 700 (2008)
- L. Rigon et al., Appl. Phys. Lett. **90** (2007) 114102
- L. Rigon et al., IEEE Nuclear Science Symposium Conference 1536 (2008)
- L. Rigon et al., Nucl. Instrum. Meth. A 608 S62-S65 (2009)
- L. Rigon et al., Nucl. Instrum. Meth. A 617 244-245 (2010)
- R. C. Chen et al., Phys. Med. Biol. 55 4993- 5005 (2010)