Inorganic Scintillators for the detection of ionizing radiation

P. Dorenbos

Inorganic Scintillators for the detection of Ionizing radiation P. Dorenbos

Scintillator applications

- security
- medical diagnostics
- industry + science
- space explorations
- high energy physics

Topics

- How it works?
 - The light output
 - The luminescence
 - The scintillation mechanism
- How it performs?
 - Energy resolution
 - Time resolution
- How it is used?
 - Current developments

How many photons are emitted? What is color and speed of emission? What happens on an atomic scale?

What is the status and are the limits? What is the status and are the limits?

What are the hot topics today?

The scintillation process

Scintillators	Light sensors
inorganic crystals/powder organic plastics/crystals glass liquid gas	Human eye Photomultiplier tubes silicon photo diodes Si-PMTs CCDs gas-filled detectors

The Bolognian stone

TUDelft

TUDelft

Main drivers of scintillation research

Homeland security

- High resolution scintillators for radioisotope identification
- Shortage of ³He→thermal neutron scintillators
- Space explorations
 - High resolution, low intrinsic count rate scintillators
- Medical diagnostics
 - TOF-PET very fast risetime scintillators
 - SPECT
- High energy physics
 - High density and high radiation hardness
 - Large volumes at low cost

Important gamma ray scintillator parameters

- High light output
- fast scintillation speed
- low energy resolution
- high density for γ detection
- large size of crystal
- low cost per cm³
- low afterglow (low phosphorescence)
- low background count rate (low intrinsic activity)
 - absence of radioactive isotopes

Importance depends on application

Y (photons/MeV) τ_s (ns) *R*_{FWHM} (%) ρ (g/cm³) 10-100-1000 cm³

Properties of inorganic scintillators

scintillator	ρ	n	τ	λ _{max}	N _{phot} /MeV
Nal (at 80 K)	3.67	1.75	60	303	76000
Nal(TI)	3.67	1.75	230	415	38000
CsI(TI)	4.51	1.75	3340	540	65000
BaF ₂	4.89	1.5	630	310	9500
(valence e ⁻ to core)			0.6	220	1400
Bi4Ge3O12 (BGO)	7.13	2.15	300	480	8200
PbWO ₄	8.28	2.20	10	470	100
Lu ₂ SiO ₅ :Ce (LSO)	7.4	1.8	47	420	25000
YAIO3:Ce (YAP)	5.37	1.95	27	370	18000
LaCl ₃ :Ce	3.7	1.8	35	350	50000
LaBr ₃ :Ce	5.1	2.1	17	380	70000

The growth of NaI:TI scintillation crystals

dr. A. Gektin and prof. C.W.E. van Eijk with a NaI:TI ingot

Examples or bare scintillation crystals

Nal (TI)

CsI (TI)

BGO

 $CdWO_4$

Examples of packed crystals

Gamma camera crystal

Nal(TI) crystals

The scintillation process

What is happening in between? A lot!

The scintillation process

Three phases

- 1. The interaction phase + thermalization phase
- 2. The charge carrier and energy migration phase
- 3. The luminescence phase

(ps) (ps-ns-ms) (ns-µs)

Phase I: The interaction phase

- Gamma ray interaction \rightarrow energetic electron
 - The photo-electric effect
 - The Compton scattering
 - Pair production

TUDelft

 Z_{eff}^{3-4} (dominant <100 keV) ρ (dominant around 1MeV) $E_{\gamma} > 1.02$ MeV

The ionization track in scintillators

 10 keV – 10 MeV X-ray or gamma-rays produce fast primary electrons

The Bethe formula

$$-\frac{dE}{dx} = \frac{4\pi e^4 z^2}{m_0 v^2} NZ \left[\ln \frac{2m_0 v^2}{I} - \ln \left(1 - \frac{v^2}{c^2} \right) - \frac{v^2}{c^2} \right]$$

- ez = particle charge
- v = particle velocity

N,Z = number density and atomic number atoms

I = average ionization potential atoms

Smaller energy \rightarrow smaller v \rightarrow higher dE/dx \rightarrow more ionizations/volume

Chapter 6: Interaction of Radiation with Matter . . . 81

Figure 6–15. Multiple interactions of a photon passing through matter. Energy is transferred to electrons in a sequence of photon-energy degrading interactions.

- Multiple interactions
 - One scintillation event can produce separate ionization tracks in the scintillator
 - Everything takes place in the 1-10 ps time scale
 - Separate flashes add to one scintillation flash
- High energy physics GeV-TeV→ shower of events

Energy needed for electron-hole pair generation

Semiconductor	ρ (g/cm ³)	Ζ	E_{g} (eV)	Eion (e
Si	2.33	14	1.12	3.6
Ge	5.33	32	0.67	2.9
GaSe	4.55	31, 34	2.03	4.5
InP	4.78	49, 15	1.30	4.2
CdS	4.84	48, 16	2.60	7.3
GaAs	5.32	31, 33	1.43	4.3
InSb	5.77	49, 51	0.20	0.6
CdSe	5.80	48, 34	1.73	5.5
CdTe	6.20	48, 52	1.44	4.7
Pbl ₂	6.20	82, 53	2.55	7.7
Hgl ₂	6.40	80, 53	2.13	4.2
TIBr	7.56	81, 35	2.68	6.5

Figure 13.21 The average energy required to form one electron-hole pair (ϵ) versus bandgap energy for a number of semiconductor materials. (From Klein.⁴⁵)

Linear relationship between E_{ion} and E_{g} (In figure β =2.8)

TUDelft

The ionization track and electron-hole creation

- S is the transfer efficiency from track to luminescence center
- Q is quantum efficiency of luminescence center

The ideal scintillator has S=Q=1

Latest developments in scintillation research

Latest materials developments

- Elpasolites (Radiation Monitoring Devices, dr. K. Shah)
- Eu²⁺ doped halides (University of Berkeley, prof. Derenzo, prof. Moses)
- Lu₃Al₅O₁₂:Pr³⁺ (Tohuku Univ, prof. Yoshikawa, Inst. of Phys. Prague, dr. M. Nikl)

Current developments SrI₂:Eu

Cherepy et al. Appl. Phys. Lett. 92 (2008) 083508

Current developments Ba₂CsI₅:Eu²⁺

Fig. 1. A 1 cm in diameter $Ba_2Csl_5:Eu^{2+}$ shown as-grown in a sealed quartz ampoule.

Fig. 3. Pulse height spectra of Ba₂CsI₅:Eu²⁺ and NaI:TI measured under ¹³⁷Cs gamma-ray excitation.

Bourret-Courchesne et al. Nucl. Instr. Meth. A612 (2009) 138

Current developments BaBrI₃:Eu²⁺

Fig. 1. 1 cm in diameter BaBrI:Eu²⁺ shown as-grown in a sealed quartz ampoule.

Fig. 2. Pulse height spectra of BaBrI:Eu²⁺ and NaI:TI measured under ¹³⁷Cs gamma-ray excitation.

Bourret-Courchesne et al. Nucl. Instr. Meth. A613 (2010) 95

Recently more materials were discovered. All have their pros and cons.

Scintillators	Pr:LuAG (Lu ₃ Al ₅ O ₁₂)
Density (g/cm ³)	6.7
Light Yield (BGO=100)	330
Decay Time (ns)	<25
Peak emission (nm)	310
Energy Resolution (%@662keV)	5
Hygroscopicity	No
Cleavage	No
Melting Point (°C)	1970

Fast and good energy resolution But high intrinsic background (Lu)

2 inch ϕ L uAG single crystal grown by Cz method

The scintillation process; phase III

Three phases

- 1. The interaction phase + thermalization
- 2. The charge carrier and energy migration phase
- 3. The luminescence phase

(ps) (ns-ms) (ns-µs)

The luminescence phase

The most popular activator ions

- The 6s²-ions TI⁺, Pb²⁺, Bi³⁺
 - NaI:TI, CsI:TI, Bi₄Ge₃O₁₂, PbWO₄
- The lanthanide ions Ce³⁺, Pr³⁺, Eu²⁺
 - YAIO₃:Ce, Y₃AI₅O₁₂:Ce, Lu₂SiO₅:Ce, LuAIO₃:Ce, LaCI₃:Ce, LaBr₃:Ce, LiI:Eu, Lu₃AI₅O₁₂:Pr³⁺

6s²-ions TI⁺, Pb²⁺, Bi³⁺

ground state configuration excited state configuration

TUDelft

 $6S^2$

6s6p

Lanthanide luminescence

electron configuration
[Xe]4fⁿ5d⁰

 4f electrons are shielded from the crystalline field. Level energies independent on host lattice

 5d electron strong interaction with crystal field. Level energies depend on host crystal

TUDelft

TUDelft

The emission wavelength

- Electrons either in the ground state or excited state of a luminescence center interact with the surrounding atoms in a compound
 - 4f electrons have negligible interaction
 - 5d electrons (also 6s and 6p electrons of 6s²-ions) have strong interaction
- Interaction depends on
 - Crystal structure,
 - coordination number, bond lengths etc.
 - The chemical properties of the anions
 - F⁻, Cl⁻, Br⁻, l⁻ and O²⁻, S²⁻
- The emission of Ce³⁺ may vary from 300 nm in fluoride compounds up to 600 nm in sulfide compounds

Characteristic emission spectra Ce, Pr, Nd

Emission and quantum efficiency

Ce³⁺ doped lanthanide compounds are ideal for gamma ray scintillators

- Fast dipole and spin allowed 5d-4f emission (15-60 ns)
- Emission wavelength matches sensitivity of photomultiplier tubes
- High thermal stability of emission
- Absence of slow 4f-4f emission
- Ce³⁺ is a good hole trap which is regarded as a first important step in the scintillation process
- Lanthanide (La, Gd, Lu) based host lattices are dense providing efficient gamma ray detection materials

• LaBr₃:Ce, Gd₂SiO₅:Ce, Lu₂SiO₅:Ce

Stokes shift and self-absorption

- A scintillator crystal needs to be transparent to its own scintillation light
- A photon emitted by a luminescence center can be reabsorbed by another luminescence center of the same type
- Probability increases with
 - Larger activator concentration
 - Higher temperature (broadening of emission and absorption bands)
 - Larger crystal size
 - Smaller value for the Stokes shift
 - Stokes shift = energy difference between emission and first absorption band of luminescence center

Stokes shift and self-absorption

Stokes shift is the energy lost due to lattice relaxation

Aspects of self-absorption in LaBr₃:5% Ce

- High energy part of emission re-absorbed by Ce³⁺
- Re-emission by Ce³⁺
 - emission profile changes
 - scintillation decay time lengthening
 - scintillation light losses (because Q<1)

Thermal quenching

Important for:

- luminescence efficiency Q
- stable scintillator operation against temperature fluctuations
- high temperature applications e.g. oil-well logging

Thermal quenching of luminescence

Thermal quenching of Ce³⁺ emission

So far we have treated:

- Phase I: Interaction of a gamma photon with scintillators
 - Creation of the ionization track
 - Relation between number of ionizations and band gap
- Phase III: The luminescence centers
 - s²-elements (TI, Pb, Bi) and lanthanides (Ce³⁺, Pr³⁺)
 - Wavelength of emission, self-absorption, Stokes shift
 - Thermal stability and thermal quenching
- Next, Phase II: scintillation mechanisms
 - Intrinsic scintillators
 - Self trapped exciton and core valence luminescence
 - Activated scintillators
 - energy migration from ionization track to luminescence centers
 - LaCl₃:Ce and LaBr₃:Ce as an example

Core valence luminescence

condition for CVL: $E_{vc} < E_g$

Self trapped exciton and Core valence luminescence in BaF_2

N.N. Ershov, N.G. Zakharov, P.A. Rodnyi Opt. Spektrosk. 53(1982)89-93

What is a self trapped exciton?

- hole in valence band is shared between two anions forming an X_2^- molecule like defect (V_k center)
- electron in an orbit around the V_k center

Scintillation mechanism in LaCl₃ and LaBr₃

Ce³⁺ + h → Ce⁴⁺ Ce⁴⁺ + e → (Ce³⁺)^{*} → photon 17 ns fast scintillation component e + h → exciton→ STE
STE→ STE emission (or loss)
µs slow scintillation component
STE→Ce transfer

X-ray excited luminescence LaCl₃:0.6% Ce³⁺

Competition STE emission and Ce emission as function of temperature

Competition STE emission and Ce emission as function of temperature and concentration

Summary scintillation processes in La-halides

- Direct capture of electron and holes
 - Fast Ce³⁺ emission decay component of 16 ns
- Creation of self trapped excitons
 - Slow STE emission
 - Thermally activated STE migration
- Energy transfer from STE to Ce³⁺
 - Slow Ce³⁺ scintillation components

Different competing scintillation processes depending on

- Ce concentration
- on temperatures

Further reading: G. Bizarri, P. Dorenbos, Phys. Rev. B 75, 184302 2000

LaBr₃:Ce³⁺; record low energy resolution at 662 keV

Anatomy of a pulse height spectrum from ²⁴Na-source measured with LaBr₃:5%Ce

spectrum due to 1.37 MeV + 2.75 MeV gamma source

Anatomy of a pulse height spectrum from ²⁴Na-source measured with LaBr₃:5%Ce

Anatomy of a pulse height spectrum from ²⁴Na-source measured with LaBr3:5%Ce

Two remaining features at 511 keV and around 250 keV

Back scatter peaks due to gamma rays scattered from materials outside the scintillator

- Compton scattered gamma's
- annihilation gamma 511 keV

BrilLanCe[™] trademark of La-halide scintillators

Discovered by TU-Delft

LaCl₃:Ce crystal growth progress From labsize to 4"x6" scintillators crystals

Scintillation Material

LaBr₃:Ce for nuclide identification

SAM Revealer

Multiple Isotopes in Real Time

GPS Event Stamping

identiFINDER[™]

UNIQUE HAND-HELD RADIONUCLIDE IDENTIFICATION DEVICE

New with LaBr₃ Detector

Comparison NaI:Tl, LaBr₃:Ce, HP-Ge

Real energy [keV]	Element
511	anihilation peak
518	Cl
583.1	208T1
	Ge
	Ge
788	Cl
911.1	228Åc
1165	Cl
1201	Ηđ
1460	40K decay
1600	Clf
1686	Nas
1712	Нs
1778	Ál f
1953	C1 d
1957	Clf
2223	Н
2611	208T1
2622	Na d
2676	Clf
2843	Si d
2864	Clf
2977	Fs
2997	Clf
3017	Ff
3062	(] f

LaBr₃:Ce in 2011 on mission to Phobos (Mars) and in 2014 on mission to Mercury

LaBr₃ detector for the Phobos-Grunt mission

LaBr₃ detector for the BepiColombo mission

Aspects that determine resolution

$$R^{2} = R_{\text{stat}}^{2} + R_{\text{inhom}}^{2} + R_{\text{nonprop}}^{2}$$
$$R_{\text{stat}}^{FWHM} (\%) = 235 \sqrt{\frac{1 + v_{PMT}}{N_{dph}}} \quad v_{PMT} \approx 0.2$$

- the fundamental limit is governed by statistics
- you need to detect as many photons as possible
 - \rightarrow bright scintillator
 - \rightarrow efficient low noise photon detector

The ideal scintillator has S=Q=1

Energy resolution @ 662 keV

$$R_{\rm stat} = 2.35 \sqrt{\frac{1+0.2}{N_{dph}}}$$

- YAIO₃:Ce, Lu₃Al₅O₁₂:Pr, LaCl₃:Ce, LaBr₃:Ce, Srl₂:Eu are reasonably close to fundamental limit.
- Lu₂SiO₅, NaI:TI, CsI:TI, strong deviation

What causes the strong deviation?

Aspects that determine resolution

$$R^{2} = R_{\text{stat}}^{2} + R_{\text{inhom}}^{2} + R_{\text{nonprop}}^{2}$$
$$R_{\text{stat}}^{FWHM} (\%) = 235 \sqrt{\frac{1 + v_{PMT}}{N_{dph}}} \quad v_{PMT} \approx 0.2$$

• when the number of created photons is not proportional with the energy of the primary electron

 \rightarrow additional contribution to resolution (R_{nonprop})

• topic of current interest

 \rightarrow for study, we need a tunable β -source inside scintillator!

The Compton Coincidence Technique

- Developed by Valentine and Rooney
 - Nucl. Instr. and Meth A353 (1994) 37; IEEE Trans.Nucl.Sci.43(1996)1271
- Provides electron response curves

$$h\nu' = \frac{h\nu}{1 + (h\nu/m_0c^2)(1 - \cos\theta)}$$
$$E_c = h\nu - h\nu'$$

Advantage

- intrinsic tunable β -source
- energy range 6-400 keV

Fig. 1. Block diagram of Compton Coincidence Technique (CCT).

ŤUDelft

Tunable synchrotron X-ray source

- Synchrotron X-ray beamline HASYLAB, DESY, Hamburg
- 9-100 keV monochromatic and tunable
 - 5-15 eV energy resolution
- Pencil beam
 - \rightarrow we always excite the same volume element of the scintillator
 - \rightarrow minimum contribution to resolution from scintillator inhomogeneity

Compton-electron spectroscopy

- Can we go below 2% energy resolution at 662 keV?
 - We need bright scintillators combined with low noise photon detectors
 - We need proportional scintillators

Time resolution

Time resolution = accuracy with which the moment of interaction can be determined

It depends:

- scintillation speed (decay time and rise time)
 - more ph/MeV
- photon detector time resolution
- electronics

Timing resolution

BaF₂

STE

0.6 µs

780 ps

200 time [2.92 ns/channel

100

fast

time [43 ps/channel]

150 200 250 300

350

300

and LSO(Ce), after excitation by y-rays.

The steepness of the rising pulse is important

Scintillator risetime studies

TUDelft

Fast timing is important for

- positron emission tomography
- positron life time studies
- time of flight applications

Typical numbers for time resolution with PMTs and 1 MeV gamma's :

Nal(TI)	:	1 ns
BGO	:	2-4 ns
BaF ₂	:	200 ps
Plastics	:	150 ps

LaBr₃ TOF-PET scanner

Time-of flight positron Emission tomography scanner

- 511 keV annihilation photons
- coincident detection
- time resolution 200 ps

Contains 38880 LaBr₃ crystals

First prototype LaBr₃ TOF-PET-scanner (2008-2009) (dr. J. Karp Pennsylvanian State University) (and Philips Medical Systems)

First TOF PET-image with LaBr₃:Ce (October 2009)

Advantage TOF-PET strong false signal reduction especially important For fat patients

Timing Spectra with SiPM – CRT at Optimum Threshold Settings

Intrinsic activity of Lu₂SiO₅:Ce

With abundance of 2.6% ¹⁷⁶Lu with half life of 3.8x10¹⁰ years an intrinsic activity of 290 cnts/cm³ is obtained

¹⁷⁶Lu isotopes emit 89, 202, plus 307 keV γ-photons plus emission of a β^{-} with maximum energy of 596 keV (plus a neutrino).

Intrinsic activity of LaBr₃:Ce

With abundance of 0.089% ^{138}La with half life of 1.0x10 11 years an intrinsic activity of 1.4 cnts/cm 3 is obtained

¹³⁸La emits either a 1.436 MeV gamma plus an 32 keV X-ray from Ba or it emits a $β^-$ with E_{max} =255keV plus a789 keV gamma.

Final remarks

- Ideal scintillator does not exist
 - compromise based on the application
- High resolution for spectroscopy (isotope identification)
 - proportional scintillators
- extremely fast rise time for timing and TOF applications
- low intrinsic count rate for space explorations
- hight density at low cost
 - for calorimeters
- current topics
 - understanding non-proportionality
 - Eu²⁺ and Pr³⁺ activated scintillators
 - scintillator pulse rise time studies

Acknowledgements

- Some of the materials for these slides were provided by
 - Dr. P. Schotanus, company Scionix, The Netherlands
 - Dr. E. Mattmann, company Saint Gobain crystals, France
 - Dr. A. Owens and F. Quarati, European Space Agency, Netherlands
 - Dr. J Karp, Pennsylvanian State University, USA

References

- Glodo et al. IEEE TNS, 52 (2005) 1805.
- Radiation Detection and Measurements, G. Knoll, John Wiley&Sons, Inc
- Saint Gobain brochures on scintillators, http://www.detectors.saint-gobain.com/
- N. Cherepy, S.A. Payne, et al. IEEE Trans. Nucl. Sci. 56(3) (2009) 873
- I.V. Khodyuk, J.T.M. de Haas, P. Dorenbos, IEEE Trans. Nucl. Science 57(2010) 1175-1181
- G. Bizarri, P. Dorenbos, Phys. Rev. B. 75 (2007) 184302.
- P. Dorenbos, IEEE Trans. Nucl. Sci. 57 (2010) 1162-1167.
- P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, IEEE Trans. Nucl. Sci. 51(3) (2004) 1289-1296.
- M.J. Weber, J. Lumin. 100 (2002) 35.

Thermal neutron scintillators

- Efficient thermal neutron detection
 - high capture cross section
 - suitable isotopes and isotope enrichment
 - absence of competing capture processes
- gamma ray back ground rejection
 - thin layers of low density
 - pulse height discrimination
 - pulse shape discrimination

Thermal neutron capture reactions

- n + ${}^{6}\text{Li} \rightarrow {}^{3}\text{H} + \alpha + 4.79 \text{ MeV}$
- $n + {}^{10}B \rightarrow {}^{11}B \rightarrow {}^{7}Li + \alpha + 2.78 \text{ MeV}$ (7%)

 $^{7}\text{Li}^{*}$ + α + 2.30 MeV (93%)

inorganic thermal-neutron scintillators

Scintill. [host	Densityp a/cm ³	Abs. Length at 1.8 Å	ο ρΖ 4 eff (x 100)	Dopant/ conc-mol%	λ em nm	Light yield		τ ns
	J	mm				neutron	MeV gamma	
⁶ Li-glass	2.5	0.52		Ce	395	6.000	4.000	75
⁶ LiI	4.1	0.54	31	Eu	470	50,000	12,000	1.4 x 10 ³
⁶ LiF/ZnS	2.6	0.8	1.2	Ag	450	160,000	75,000	10 x 10 ³
⁶ Li ₆ Gd(BO	₃) ₃ 3.5	0.35	25	Ce	385/415	40,000	20,000	200/800

Pulse shape discrimination due to corevalence luminescence in LiBaF₃:Ce³⁺

C.M. Combes et al. / Journal of Luminescence 72-74 (1997) 753-755

LiBaF₃:Ce scintillator

C.M. Combes *et al*, NIM A416(1998)364

Spectra of radiation emitted by a Pu-Be source shielded with paraffine and 6 cm of lead

1 is without discrimination, # 2 with discrimination.The neutron peak at 750 keV gamma-equivalent energy is almost free from background

CVL does not respond to ³H (2.75 MeV) + ⁴He (2.05 MeV)

Thermal neutron detection with $Cs_2LiYCl_6:0.1\% Ce^{3+}$

Thermal neutron scintillators

Selection of the scintillator based on thermal neutron detection efficiency

σ (barn)	6Li - nat /%Σσ	6Li - 95enr /%Σσ	Absorption length 0.18 nm - 95enr (mm)
Cs ₂ LiYBr ₆	71/41	895/90	3.7
Rb ₂ LiYBr ₆	71/62	895/95	3.5
Li ₂ NaYBr ₆	142/77	1790/98	1.7
K ₂ LiYBr ₆	71/60	895/95	3.5
Rb ₂ LiLaBr ₆	71/58	895/95	3.5
Cs ₂ LiLuI ₆	71/29	895/84	3.9
Rb ₂ LiYI ₆	71/65	895/96	3.4

Thermal neutron scintillation light yield and peak resolution $Rb_2LiYBr_6:Ce^{3+}$

Compounds	Photons/neutron	α/β ratio	Peak resolution %
Rb ₂ LiYBr ₆ : 0.1% Ce ³⁺	59,000 ± 5,900	0.74	3.6
Rb_2LiYBr_6 : 0.5% Ce^{3+}	83,000 ± 8,300	0.75	5.4
Rb ₂ LiYBr ₆ : 1% Ce ³⁺	$49,000 \pm 4,900$	0.79	8.5
	$51,000 \pm 5,100$	0.82	4.2
Rb ₂ LiYBr ₆ : 5% Ce ³⁺	39,000 ± 3,900	0.74	5.8
	$42,000 \pm 4,200$	0.80	7.8

Scintill.	Density	Abs. Length	λ	Light yield		α/β	Т	Peak
host P		at 1.8 Å	nm	photons per		ratio	ns	Resolution
	g/cm ³	mm		neutron	MeV gamma			(%)
⁶ Li Glass:Ce	2.5	0.52	395	~6,000	~4,000	0.31	75	13-22 %
								3.9 %
								-
Cs ₂ LiYBr ₆ :Ce ³⁺	4.1	3.7	389	73,000	20,000	0.76	89,	4.6 %
							2.5 x 10 ³	
Rb ₂ LiYBr ₆ :Ce ³⁺	4.8	3.5	385	83,000	23,000	0.74	42,140	3.6 %
							1.6 x 10 ³	
Li ₂ NaYBr ₆ :Ce ³⁺	2.9	1.7	380	39,000	12,400	0.66	30,560	-
							2.6 x 10 ³	

TUDelft