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Effective string theory and the quark-antiquark potential

The present understanding of QCD is mainly based on the idea that the confining regime of  Yang-Mills theories is 
described by some kind of effective  string model.

e −e
q −q

R

R

V(R)= σ − k/RR

(Cornell potential)

(Coulomb potential)

V(R)= − a/R

In 4D  we may naively guess a hybrid UV/IR inter-quark potential of Cornell's form:

where  is the string tension.σ

The  chromo-electric flux lines are confined in a thin flux tube.
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Using lattice regularisation of pure gauge theories one can easily study non perturbative phenomena: the
inter-quark potential rises linearly,  and the chromo-electric flux lines are indeed confined in a thin string.

Indeed, the Cornell's potential fits very well the numerical results from pure Yang-Mills lattice simulations:
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(The  gauge group is  ,   , and    is the Yang-Mills coupling constant.)SU(3) β = 6/gYM gYM

[G.S. Bali, “QCD forces and heavy quark bound states,” hep-ph/0001312] 
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However, a similarly  good numerical agreement is obtained in D=3  where the Coulomb potential is 
logarithmic. In addition, the coefficient k depends only on the dimensionality D of the space-time...

V(R) = − lim
L→∞

1
L

log W(R, L) = σR −
(D − 2)π

24R
+ …

where

W(R, L) = Tr ∏
nμ∈γ(R,L)

eAμ(n)

W is the simplest gauge-invariant observable, the so-called ``Wilson loop''

[Luscher et al.] 

Euclidean time t:
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𝒜 = 𝒜cl + 𝒜0 𝒜0 =
σ
2 ∫ d2x (∂α

⃗ϕ ⋅ ∂α ⃗ϕ )

The corresponding action is that of D-2 free massless boson fields  : ϕi , (i = 1,…, D − 2)

But there are observed deviations, and the first possible corrections are

𝒜 = 𝒜cl + 𝒜0 + σ∫ d2x [c2(∂α
⃗ϕ ⋅ ∂α ⃗ϕ )2 + c3(∂α

⃗ϕ ⋅ ∂β ⃗ϕ )(∂β
⃗ϕ ⋅ ∂α ⃗ϕ )] + 𝒜b + … ,

where  is the boundary action characterising the open effective string.Sb

The quark-antiquark potential

• The present understanding of QCD is mainly based on the idea that the
confining regime of Yang-Mills theories is described by some kind of e↵ective
string model.
• In 4D we may naively guess a hybrid UV/IR interquark potential of Cornell’s
form:

e −e
q −q

R

R

V(R)= σ − k/RR

(Cornell potential)

(Coulomb potential)

V(R)= − a/R

where � is the string tension and k = 4↵s/3 .
=) Using lattice regularization of pure gauge theories one can easily study non
perturbative phenomena: the interquark potential rises linearly, and the
chromoelectric flux lines are confined in a thin flux tube.

 W  partition function of D-2 massless boson fields  in two dimensions.∼

(For the Cornell potential)
(Boundary)

ϕ1

ϕ2
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The full Lorentz invariance of the D-dimensional target space, should be still respected nonlinearly by the 
expanded action. This gives

c2 =
1
8

, c3 = −
1
4

,

with this extra constraint we have

𝒜 = 𝒜cl + 𝒜0 −
1

2π2σ ∫ d2x TT̄ + 𝒜b + …

where

TT̄ = − π det[Tμν]

is  the Zamolodchikov  irrelevant composite field.TT̄



8

  Lagrangian and Hamiltonian flow equations:TT̄

Massless boson field theories

ℒ(0) = ∂ ⃗ϕ ⋅ ∂̄ ⃗ϕ

ℒ(τ) =
1
2τ (−1 + 1 + 4τ∂ ⃗ϕ ⋅ ∂̄ ⃗ϕ − 4τ2 ℬ) = −

1
2τ

+ ℒstatic
NG (τ) ℬ =

N

∑
i=1

(∂ϕi)2
N

∑
j=1

(∂̄ϕj)
2

− (
N

∑
i=1

∂ϕi∂̄ϕi)
2

∂τℒ(τ) = det[Tμν(τ)] , ∂τℋ(τ) = det[Tμν(τ)]

(Euclidean space-time)

Tμν(τ) =
−2

g
∂ℒ(τ)
∂gμν

,

(In complex coordinates: ) ∂ = ∂z , ∂̄ = ∂z̄

(z = x1 + ix2, z̄ = x1 − ix2)
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The Nambu-Goto model

𝒜 = ∫ dA = ∫ d2xℒNG =
1
2τ ∫ det

D

∑
μ=1

∂αXμ(x1, x2) ∂βXμ(x1, x2) d2x

in the  static gauge

X1 → x1 , X2 → x2 , Xi → τ
1
2 ϕi−2 , (i = 3,…D)

we have

ℒNG → ℒstatic
NG



Boson field theories with generic potential 

ℒV(τ) =
−V

1 + τ V
+

1
2τ̄ (−1 + 1 + 4τ̄ℒ(0) − 4τ̄2 ℬ)

ℒV(0) = ℒ(0) − V ℒ(0) = ∂ ⃗ϕ ⋅ ∂̄ ⃗ϕ , V = V( ⃗ϕ )

τ̄ = τ (1 + τV)

with

10

[Conti-Negro-Iannella-RT — Bonelli-Doroud-Zhu 2018] 



The sine-Gordon model

with

and  EoM 
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∂ ( ∂̄ϕ
S ) + ∂̄ ( ∂ϕ

S ) = −
V′ 

4S ( S + 1
1 + τV )

2

S(ϕ) = 1 + 4τ (1 + τV) ∂ϕ∂̄ϕ

V′ = 2
m2

β
sin(βϕ)

V = 2
m2

β2 (1 − cos(βϕ))

ℒsG(ϕ, τ) =
−V

1 + τ V
+

−1 + S(ϕ)
2τ(1 + τV)



A local change of coordinates
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2∂w∂w̄ϕ = − V′ 

(z = x1 + ix2, z̄ = x1 − ix2)

(w = y1 + iy2, w̄ = y1 − iy2)

∂ ( ∂̄ϕ
S ) + ∂̄ ( ∂ϕ

S ) = −
V′ 

4S ( S + 1
1 + τV )

2

3.1 From the deformed to the undeformed model through a local change of

coordinates

Thus we have inferred that there must exist a coordinate system w = (w1(z), w2(z)) =

(w(z), w̄(z)) in which the matrices g
TT̄
µ⌫ and d

TT̄
µ⌫ assume the same form as g

sG
µ⌫ and d

sG
µ⌫ ,

respectively. In formulae

g
sG
µ⌫dw

µ
dw

⌫ = g
TT̄
µ⌫ dz

µ
dz

⌫ =) g
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= g

TT̄
⇢� , (3.15)

d
sG
µ⌫dw

µ
dw

⌫ = d
TT̄
µ⌫ dz

µ
dz

⌫ =) d
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= d

TT̄
⇢� . (3.16)

It is now a matter of simple algebraic manipulations to obtain the following equations for the

new coordinates

@w =
(S + 1)2

4S (1� ⌧V )
, @̄w̄ =

(S + 1)2

4S (1� ⌧V )
, (3.17)

@̄w =
⌧

S

�
@̄�
�2

, @w̄ =
⌧

S
(@�)2 . (3.18)

Let us now use the latter relations to find the partial derivatives of the field � in the coordinates

w:  
@�

@̄�

!
= J

 
@�/@w

@�/@w̄

!
, J =

 
@w @w̄

@̄w @̄w̄

!
. (3.19)

The result is

@� =
1

1� ⌧ (K + V )

@�

@w
, @̄� =

1

1� ⌧ (K + V )

@�

@w̄
, (3.20)

where we have defined the following function

K =
@�(w)

@w

@�(w)

@w̄
. (3.21)

With the help of (3.20), we can now find the expression for S in the coordinates w

S =
q
1 + 4⌧ (1� ⌧V ) @�@̄� =

1 + ⌧ (K � V )

1� ⌧ (K + V )
. (3.22)

We can then write the Jacobian matrix J and its inverse J �1 in terms of w as

J =

 
@w @w̄

@̄w @̄w̄

!
=

1

(1� ⌧V )2 � ⌧2K2

0

@
1� ⌧V ⌧

⇣
@�
@w

⌘2

⌧

⇣
@�
@w̄

⌘2
1� ⌧V

1

A ,

J �1 =

 
@wz @wz̄

@w̄z @w̄z̄

!
=

0

@
1 + ⌧V �⌧

⇣
@�
@w

⌘2

�⌧

⇣
@�
@w̄

⌘2
1 + ⌧V

1

A . (3.23)

– 9 –



(a) (b)

(c) (d)

Figure 2. The TT̄-deformed moving one-kink solution (m = � = 1 , a = 2), for di↵erent values of the
perturbation parameter ⌧ . Figure 2b represents the undeformed solution. Figure 2a corresponds to
⌧ = �1/4, while Figures 2c and 2d correspond to ⌧ = 1/8 and ⌧ = 1/3, respectively. Notice that at
⌧ = 1/8 a shock-wave singularity occurs.

and thus expressions (5.4) become

z(w) = w + 4⌧
m

a�
cos

 
�
(0)
1-kink(w)

2

!
, z̄(w) = w̄ + 4⌧

am

�
cos

 
�
(0)
1-kink(w)

2

!
, (5.6)

which are easily inverted as

w(z) = z � 4⌧
m

a�
cos

 
�
(0)
1-kink (w(z))

2

!
= z � 4⌧

m

a�
cos

 
�
(⌧)
1-kink (z)

2

!
,

w̄(z) = z̄ � 4⌧
am

�
cos

 
�
(0)
1-kink (w(z))

2

!
= z̄ � 4⌧

am

�
cos

 
�
(⌧)
1-kink (z)

2

!
.

(5.7)

Finally, plugging (5.7) into (5.3) we find

m

�

✓
az +

1

a
z̄

◆
= 8⌧

m
2

�2
cos

 
�
(⌧)
1-kink(z)

2

!
+ ln

 
tan

 
�
(⌧)
1-kink(z)

4

!!
, (5.8)
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The deformed kink solution
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τ > 0
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The deformed sine-Gordon breather
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τ = 0

τ < 0

τ > 0

(a) (b)

(c) (d)

Figure 4. The TT̄-deformed stationary breather solution with envelope speed v = 0 (m = � =
1 ,  = 2

5⇡), for di↵erent values of the perturbation parameter ⌧ . Figure 4b represents the undeformed
solution, Figure 4a corresponds to ⌧ = �1/2, while Figures 4c and 4d correspond to ⌧ = 1/10 and
⌧ = 1/5, respectively.

Performing the change of variables u(w) = (u(w), ū(w)), one finds

(
@z
@u = �

m
1

2 sin 

�
@z
@w + @z

@w̄

�

@z
@ū = �

m
1

2 cos 

�
� @z
@w + @z

@w̄

� ,

(
@z̄
@u = �

m
1

2 sin 

�
@z̄
@w + @z̄

@w̄

�

@z̄
@ū = �

m
1

2 cos 

�
� @z̄
@w + @z̄

@w̄

� , (5.15)

and again plugging (5.1) into (5.15) with the identification �(w) ⌘ �
(0)
breather(w), one gets two

sets of di↵erential equations which can be solved for z(u) giving

z(u) =
�

m

✓
u

2 sin 
� ū

2 cos 

◆
� 8⌧

m

�
sin 

cos ū

coshu

sec ū sinhu+ sechu sin ū tan 

1 + (tan sin ū sechu)2
,

z̄(u) =
�

m

✓
u

2 sin 
+

ū

2 cos 

◆
� 8⌧

m

�
sin 

cos ū

coshu

sec ū sinhu� sechu sin ū tan 

1 + (tan sin ū sechu)2
.

(5.16)

As for the two-kink example, the constants of integration in (5.16) are fixed according to the

⌧ = 0 case, and again the solution u(z) to (5.16) is computed numerically. The deformed

solution �(⌧)breather(z) is displayed in Figure 4 for di↵erent values of ⌧ . The result is similar to
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Figure 2: The e↵ect of the �R-deformation on relativistic scattering processes. The parti-
cles gain a width in a consistent fashion in space-time, as if “grout” were added between
tiles.

where ja = (q0, j0)a is the particle 2-current as before, and T 0a
NR is the non-relativistic

energy 2-current. Therefore one way of viewing the previous results is to treat only the
rest mass term as being dominant, in which case the deformation parameter � we have
been using is related to the relativistic parameter �R of the �RT T̄ deformation by

� = �RMc2 (55)

Obviously this identification works only for massive states (or massive particles) in the
relativistic theory. However, this suggests an immediate relativistic generalisation of
particle widening: under the relativistic T T̄ deformation,

Each particle of rest mass M acquires a spatial width �RMc2 in its own rest frame.

In a boosted frame, where it has energy-momentum (p0, p1), it therefore acquires a spatial
width �Rp0, while the end-point of the hard rod is boosted to a di↵erent time �Rp1 relative
to the centre its start-point (the combination of these e↵ects lead to the usual relativistic
length contraction). In what follows, we set

c = 1. (56)

This picture is consistent with both elastic an inelastic scattering processes: since in
any such process

P
i p

0
i and

P
i p

1
i are conserved, so is the total width and the relative

time delay between its ends. For successive scattering processes this leads to a consistent
polygonal tiling of Minkowski space, with the insertion of ‘grout’ between the tiles. This
is illustrated in Fig. 2.

Moreover, it implies that any state of definite total energy E and zero momentum
acquires an additional width �RE, so that if the system had size R before deformation, the
e↵ective size, after deformation, is R � �RE. Therefore the deformed energy eigenvalues
in finite size R obey (this is the relativistic generalisation of (21))

E(�R)(R) = E0
�
R + �RE

(�R)(R)
�

(57)
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Figure and caption from [2010.15733 [hep-th]] by  J. Cardy and B. Doyon   



Generic -deformed modelsTT̄

and thus the metric, in the set of coordinates y, is

g
0
µ⌫ =

@x
⇢

@yµ

@x
�

@y⌫
g⇢� = �µ⌫ � ⌧✏µ⇢✏

�
⌫

�
2T + ⌧T

2
�⇢

�
, (4.10)

where we used the fact that g⇢� = �⇢�. Translating the first expression of (4.4) in z coordinates

and then moving to Euclidean coordinates, one obtains the inverse relation of (4.8)

@y
µ

@x⌫
= �

µ
⌫ + ⌧

� eT (⌧)
�µ

⌫
(x) ,

� eT (⌧)
�µ

⌫
(x) = �✏

µ
⇢✏

�
⌫

�
T
(⌧)

�µ
⌫
(x) , (4.11)

where
�
T
(⌧)

�µ
⌫
(x) is the stress energy tensor of the deformed theory.

Finally let us conclude this section with a couple of remarks:

• Consider the transformation of the Lagrangian7 (4.1) under the on-shell map (4.4)

L(⌧)
N (z(w)) =

L(0)
N (w) + ⌧

⇣
(KN )2 � V

2
⌘

1� 2⌧V � ⌧2
⇣
(KN )2 � V 2

⌘ . (4.13)

Using the latter expression together with

Det
�
J �1
N

�
= Det (JN )�1 = 1� 2⌧V � ⌧

2
⇣
(KN )2 � V

2
⌘

, (4.14)

we find that the action transforms as

A [�] =

Z
dz dz̄ L(⌧)(z) =

Z
dw dw̄

��det
�
J �1

��� L(⌧) (z(w))

=

Z
dw dw̄

⇣
L(0)(w) + ⌧ TT̄

(0)
(w)

⌘
(4.15)

where TT̄
(0)

(w) = (KN )2�V
2. Thus, we conclude that the action is not invariant under the

change of variables. This is not totally surprising since the map (4.4) is on-shell, however it

is remarkable that the (bare) perturbing field can be so easily identified once the change of

variables is performed. Again, our result matches with [18], where the TT̄
(0)

term emerges

as a JT gravity contribution to the action.

• Notice that the EoMs associated to (4.1) for a generic potential V are invariant under the

transformation8

z ! � z , ⌧ ! � ⌧ , V ! V � c , (4.16)

7
In the N = 1 case, the transformed Lagrangian takes an even simpler expression

L
(⌧)
1 (z(w)) =

L
(0)
1 (w)

1� ⌧L(0)
1 (w)

. (4.12)

8
We thank Sergei Dubovsky for questioning us about the possible existence of such symmetry of the EoMs.

– 12 –

Notice that
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3.1 From the deformed to the undeformed model through a local change of

coordinates

Thus we have inferred that there must exist a coordinate system w = (w1(z), w2(z)) =

(w(z), w̄(z)) in which the matrices g
TT̄
µ⌫ and d

TT̄
µ⌫ assume the same form as g

sG
µ⌫ and d

sG
µ⌫ ,

respectively. In formulae

g
sG
µ⌫dw

µ
dw

⌫ = g
TT̄
µ⌫ dz

µ
dz

⌫ =) g
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= g

TT̄
⇢� , (3.15)

d
sG
µ⌫dw

µ
dw

⌫ = d
TT̄
µ⌫ dz

µ
dz

⌫ =) d
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= d

TT̄
⇢� . (3.16)

It is now a matter of simple algebraic manipulations to obtain the following equations for the

new coordinates

@w =
(S + 1)2

4S (1� ⌧V )
, @̄w̄ =

(S + 1)2

4S (1� ⌧V )
, (3.17)

@̄w =
⌧

S

�
@̄�
�2

, @w̄ =
⌧

S
(@�)2 . (3.18)

Let us now use the latter relations to find the partial derivatives of the field � in the coordinates

w:  
@�

@̄�

!
= J

 
@�/@w

@�/@w̄

!
, J =

 
@w @w̄

@̄w @̄w̄

!
. (3.19)

The result is

@� =
1

1� ⌧ (K + V )

@�

@w
, @̄� =

1

1� ⌧ (K + V )

@�

@w̄
, (3.20)

where we have defined the following function

K =
@�(w)

@w

@�(w)

@w̄
. (3.21)

With the help of (3.20), we can now find the expression for S in the coordinates w

S =
q
1 + 4⌧ (1� ⌧V ) @�@̄� =

1 + ⌧ (K � V )

1� ⌧ (K + V )
. (3.22)

We can then write the Jacobian matrix J and its inverse J �1 in terms of w as

J =

 
@w @w̄

@̄w @̄w̄

!
=

1

(1� ⌧V )2 � ⌧2K2

0

@
1� ⌧V ⌧

⇣
@�
@w

⌘2

⌧

⇣
@�
@w̄

⌘2
1� ⌧V

1

A ,

J �1 =

 
@wz @wz̄

@w̄z @w̄z̄

!
=

0

@
1 + ⌧V �⌧

⇣
@�
@w

⌘2

�⌧

⇣
@�
@w̄

⌘2
1 + ⌧V

1

A . (3.23)

– 9 –

gμν = (JTJ)μν
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Quantum -deformations on infinite cylinder of circumference RTT̄

∂τℋ(τ) = det[Tμν(τ)] → ∂τ⟨n |ℋ(τ) |n⟩ = ⟨n | det[Tμν(τ)] |n⟩

⟨n | det[Tμν(τ)] |n⟩ = ⟨n |T11 |n⟩⟨n |T22 |n⟩ − ⟨n |T12 |n⟩⟨n |T21 |n⟩ [Zamolodchikov 2004]

( Exact! )
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∂τEn(R, τ) = En(R, τ)∂REn(R, τ) +
P2

n(R)
R

The inviscid Burgers equation for the quantum spectrum

 source term

Pn = 0 → En(R, τ) = En(R + τEn(R, τ),0)



(Typical  finite-volume spectrum)τ = 0

where,    is the “effective central charge” of the UV CFT state.ceff = c − 24Δ
19



20

For  (i.e. the ground-state energy) we have a “wave-breaking” phenomenaceff > 0



21

For  (i.e. generic excited state) the branch points move off, along the imaginary axis ceff < 0



    The CFT case

The total energy:

(primary), obtained by  an energy-dependent shift: ceff = c − 25Δ

which matches the form of  the (D=26, ) Nambu-Goto spectrum, for a generic  CFT.ceff = 24

so that equations (2.1) are replaced by the system of two coupled nonlinear integral equa-

tions:

f (±)(✓) = ±i↵� i
M

2
e±✓ R (2.8)

⌥

Z

C(±)
1

dyK(✓ � y) ln
⇣
1 + e⌥f

(±)(y)
⌘
±

Z

C(±)
2

dyK(✓ � y) ln
⇣
1 + e±f

(±)(y)
⌘

⌥

Z

C(⌥)
1

dy �CDD(✓ � y) ln
⇣
1 + e±f

(⌥)(y)
⌘
±

Z

C(⌥)
2

dy �CDD(✓ � y) ln
⇣
1 + e⌥f

(⌥)(y)
⌘
.

Plugging in (2.7), it is simple to show that these equations can be rewritten as

f (±)(✓) = ±i↵� i
M

2
e±✓

⇣
R+ 2tE(⌥)(R, t)

⌘
(2.9)

⌥

Z

C(±)
1

dyK(✓ � y) ln
⇣
1 + e⌥f

(±)(y)
⌘
±

Z

C(±)
2

dyK(✓ � y) ln
⇣
1 + e±f

(±)(y)
⌘
,

where E(±)(R, t) denote the canonical expressions for I(±), evaluated on the solutions of

the deformed NLIE system:

E(±)(R, t) =
M

2

"Z

C(±)
1

d✓

2⇡i
e±✓ ln

⇣
1 + e�f

(±)(✓)
⌘
�

Z

C(±)
2

d✓

2⇡i
e±✓ ln

⇣
1 + ef

(±)(✓)
⌘#

.(2.10)

Equations (2.9) reveal that the deformation can be interpreted as a redefinition of the

length-parameters appearing in the NLIEs, R ! R+ 2tE(±)(R, t). Consistency with (2.5)

then yields the following conditions:

R ! R+ 2⌧E(±)(R, ⌧) (2.11)

E(+)(R, ⌧) = 2⇡

✓
n0 � ce↵/24

R+ 2⌧E(�)(R, ⌧)

◆
, E(�)(R, ⌧) = 2⇡

✓
n̄0 � ce↵/24

R+ 2⌧E(+)(R, ⌧)

◆
.(2.12)

These are precisely the relations found in [9] starting from (generic) TBA equations and

imply that the energy levels have the form [7, 9]:

E(R, ⌧) = E(+)(R, ⌧) + E(�)(R, ⌧)

= �
R

2⌧
+

s
R2

4⌧2
+

2⇡

⌧

⇣
n0 + n̄0 �

ce↵
12

⌘
+

✓
2⇡(n0 � n̄0)

R

◆2

, (2.13)

P (R) = E(+)(R)� E(�)(R) =
2⇡(n0 � n̄0)

R
. (2.14)

As reviewed in the introduction, for ce↵ = D � 2 this coincides with the spectrum of the

Nambu-Goto string inD-dimensional target space obtained through light-cone quantization

(for more comments on this relation, see the Conclusions).

Let us also briefly mention that there are other NLIEs describing integrable CFTs, as well

as massless flows between minimal models [11, 13, 14]. The analysis of this section could

be repeated without essential modifications to study the t-deformation of these systems

as well. The purpose of the following Section 3 is to illustrate the generalization of these

results to the case of a massive integrable QFT, the sine-Gordon model.

6
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 Dubovsky-Flauger-Gorbenko 2012
Caselle-Gliozzi-Fioravanti-Tateo 2013
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D=4:  Born-Infeld nonlinear electrodynamics

To circumvent  the problem of divergent fields in classical electrodynamics,  Born and Infeld followed a non-
relativistic/relativistic analogy:  

ℒnon−rel = m
v2

2
⟹ ℒrel = − mc2 1 − 1 −

v2

c2

and proposed

ℒM =
1
2 ( ⃗E 2 − ⃗B 2) ⟹ ℒBI = β2 1 − 1 −

1
β2 ( ⃗E 2 − ⃗B 2) −

1
β4 ( ⃗E ⋅ ⃗B )

2

⃗E M =
q

4πr2
̂r ⟹ ⃗E BI =

q
4πr2

1 + ( q
4πr2β )

2
̂r
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LBI =
− g + det(gμν + 2τFμν)

2τ

The BI Lagrangian fulfils  the flow equation 

[Conti-Jannella-Negro-Romano-RT]∂τL =
g

4 ( 1
2

gμνgρσ − gμρgνσ)TμνTρσ

where we can set

T̃ρσ = fμρνσTμν fμνρσ =
1
2

gμρgνσ − gμσgνρ

and write

∂τL =
g

4
TμνT̃μν



𝒜′ = ∫ d4x L(gμν, x, τ + δτ) = ∫ d4x (L(gμν, x, τ) + δτ∂τL) = ∫ d4x (L(gμν, x, τ) +
gδτ

4
TμνT̃μν)

𝒜 = ∫ d4x L(x, gμν, τ) + δτ g( −
1
4

fμνρσhμρhνσ −
1
2

hμνTμν)

hμν = − T̃μν = − fμρνσTρσ = Tμν −
1
2

gμνT
ρ
ρ .

25

The infinitesimally deformed  actions

and 

Lead to the same (infinitesimally-deformed) equations of motion for the fields.  For h, the EoM are



δRμν = −
1
2

□ Tμν

∂τ1
gμν = − hμν = T̃μν(g, x, τ1)

26

𝒜 = ∫ d4x L(x, gμν + δτ hμν, τ) + δτ g( −
1
4

fμνρσhμρhνσ)
and the perturbation has been moved from the parameter to the metric!

The infinitesimal change in the Ricci tensor is:

The flow equation for the metric is:

To solve the flow equation for g  we can use a perturbative method:  in general there is no truncation!

Therefore,  the metric deformation does not come from a change of coordinates.  
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However, for BI: gμν = δμν + (τ1 − τ0)T̃μν(δ, τ0, x)

as a consequence to the  degeneracy (in pairs) of the eigenvalues of   .Tμν

In conclusion, if we set  and  we have:τ0 = 0 τ1 = τ

g′ μν = δμν − τ(TM)μν

and the BI theory with this metric  has the same equations of motion of  Maxwell theory in flat space.

Vice versa we can set  and   and find:τ0 = τ τ1 = 0 gμν = δμν − τ(T̃BI)μν

in this case we have that the EoMs of the BI  in flat space are equal to the Maxwell ones in this metric.



Thank you for your attention!
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