Jet and grooming algorithms at the future Electron-Ion-Collider

Supported by the FELLINI project and the European Commission

University of Genova: March 2021

Yiannis Makris INFN (Pavia)

Istituto Nazionale di Fisica Nucleare

In this talk:

Asymmetric jet clustering in deep-inelastic scattering

N. Sato

Grooming algorithms for DIS: example 1-jettiness

<u>arXiv: 2006.10751</u>

In collaboration with: M.Arratia, D. Neill, F. Ringer,

arXiv 2101.02708

Introduction to jets (Brief and basic)

Jet algorithms (Part 1)

Event grooming and substructure (Part 2)

deep inelastic scattering

Jet algorithms: Algorithmic, reproducible, processes that **define** the jet

IR-safe definitions of jets

Jets at Electron-Ion-Collider (EIC)

Source: <u>inspirehep.net</u>

http://www.eicug.org/web/content/yellow-report-initiative

9

Application of jets at EIC

Extraction of strong-coupling: multi-jet rates, event shapes, jet substructure,...

Hadronic structure: Jet-TMDs, in-jet fragmentation, multi-jet rates, diffractive processes,...

Nuclear matter probes: Jet substructure, jet rates and jet quenching,...

Hadronization: Jet substructure, in-jet fragmentation, jet energy loss,...

Introduction to jets (Brief and basic)

Jet algorithms (Part 1)

Event grooming and substructure (Part 2)

The kT-type algorithms

✓ I. Evaluate distance:

$$d_{ij} = \min[k_{Ti}^{2p}, k_{Tj}^{2p}] \frac{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}{R^2}$$
 "particle"-"

$$d_{iB} = k_{Ti}^{2p}$$
 "particle"-'

2. Merge "nearest"

Anti-kT:

```
Selectors (e.g. p_T > 20 GeV)
```

Final set of jets

3. Repeat

'particle"

"beam"

p = -1

arXiv:0802.1189 (M. Cacciari, G. P. Salam and G. Soyez)

Breit Frame kinematics

$$n^{\mu} = (1, 0, 0, +1)$$
 $\bar{n}^{\mu} = (1, 0, 0, -1)$

$$P^{\mu} = \frac{Q}{2x_B} n^{\mu}$$

Photon ~~~

$$q^{\mu} = \frac{Q}{2}(n^{\mu} - \bar{n}^{\mu})$$

<u>Struck quark</u>

$$p^{\mu} = q^{\mu} + xP^{\mu} = \frac{Q}{2}\bar{n}^{\mu}$$

"current fragmentation"

"target fragmentation"

Longitudinally invariant algorithms

However, in Breit Frame since they cluster in the η - ϕ space, they fail to capture jets in the very backward direction, where we are looking for one.

14

Universal TMDs in the Breit frame

arXiv:1812.08077 (X. Liu, F. Ringer, W. Vogelsang, and F. Yuan)

Also non-perturbative analysis for jet substructure observables (e.g. jet mass) is simplified in the Breit frame (work in progress)

$$\Big)\Big(D(z,b)\sqrt{S_{n\bar{n}}(b)}\Big)$$

arXiv:1807.07573 (D. G.-Reyes, I. Scimemi, W. J. Waalewijn, L. Zoppi)

Alternative algorithms

kT-type (SI) Spherically invariant

$$d_{ij} = \min(E_i^{2p}, E_j^{2p}) \frac{1 - \cos \theta_{ij}}{1 - \cos R}$$
$$d_{iB} = E_i^{2p}$$

Similar algorithm for DIS by: S. Catani, Y. L. Dokshitzer, and B. Webber, (1992)

Here we use:
$$p = -1$$

Centauro Longitudinally invariant

$$d_{ij} = \min[z_i^{2p}, z_j^{2p}](\Delta f_{ij}^2 -$$

 $f(x) = x + \mathcal{O}(x^2) \qquad \bar{\eta}_i = -\frac{2Q}{\bar{n} \cdot q} \frac{p_i^{\perp}}{n \cdot p_i}$

$+2f_if_j(1-\cos\Delta\phi_i j))/R^2$

Asymmetric measure $\bar{\eta}_i(\mathrm{BF}) = 2p_i^{\perp}/p_i^+$

Centauro: a hybrid algorithm

Longitudinally invariant Symmetric Longitudinally invariant Asymmetric

Spherically invariant Symmetric

Introduction to jets (Brief and basic)

Jet algorithms (Part 1)

Event grooming and substructure (Part 2)

Jet grooming

groomed

- The algorithm is imposed only on the jet constituents
- Particles closer in angle get clustered first
- Record clustering history in each step (example coming soon)

arXiv:1307.0007 (M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam)

21

Jet grooming

- Removes soft (= not energetic) wide angle radiation
- Isolates collinear-energetic radiation near the center of the jet insensitive to the cone/boundary
- Reduce contamination from underlying event

The grooming algorithm in DIS events

UE will not be a problem in EIC

No non-global effects

Handle on soft radiation

Dial on non-perturbative corrections

Universal FS matrix elements

Low particle multiplicity

Breit Frame kinematics

Event grooming

Event grooming in DIS

modified MassDrop Tagger (mMDT)

Centauro clustering measure, (instead of C/A) *

Modified grooming condition, (p^+ instead of p^0)

Applied to the event, (instead of jets or hemispheres)

*A similar procedure can be imposed in the Laboratory frame using C/A (L.I.)

(Step 1/2) Clustering

I. For all pair of particles (i, j) calculate: $d_{ij} = (\bar{\eta}_i - \bar{\eta}_j)^2 + 2\bar{\eta}_i\bar{\eta}_j(1 - \cos(\phi_i - \phi_j))$

2. Find the smallest measure and cluster particles i and j into a single branch

3. Repeat until all particles are clustered together

(Step 2/2) **De**Clustering: Open the clustered tree in the reverse order. In each decluttering step there are two branches.

I. For these two branches test the condition:

 $\frac{\min(z_i, \, z_j)}{z_i + z_j} > z_{\rm cut}$

2. If the condition is false, drop the branch with smallest z_i , and continue with the decluttering (point I) of the branch largest z_i .

3. Repeat until the condition evaluate true

 $z_i = \frac{P \cdot p_i}{P \cdot q}$

Energy fraction (of particle *i*)

30

Applications for EIC

Event-shape observables in ep

Dynamics and interplay of perturbative QCD and hadronization Extracting QCD fundamental constants (strong coupling) Fragmentation of heavy quarks

3D-structure of the proton (complementary to semi-inclusive DIS) Probe to initial state (proton/nuclear) TMDs (no TMD-FFs) Probe to final state TMDs and TMD evolution (no TMD-PDFs)

Cold nuclear matter effects

Jet substructure \rightarrow Event substructure (z_g, θ_g)

Clean access to modifications from propagation in nuclear medium

Applications for EIC

Dynamics and interplay of perturbative QCD and hadronization Extracting QCD fundamental constants (strong coupling) Fragmentation of heavy quarks

3D-structure of the proton (complementary to semi-inclusive DIS) Probe to initial state (proton/nuclear) TMDs (no TMD-FFs) Probe to final state TMDs and TMD evolution (no TMD-PDFs)

Cold nuclear matter effects

Jet substructure \rightarrow Event substructure (z_g, θ_g)

Clean access to modifications from propagation in nuclear medium

1-jettiness in DIS

$$\tau_1 = \frac{2}{Q^2} \sum_{i \in \text{event}} \min(q_B \cdot p_i, \, q_J \cdot p_i) \qquad q$$

$$q_B^\mu = x P^\mu \qquad q_J^\mu$$

arXiv: 1004.2489 (I.W. Stewart, F. J. Tackmann, and W. J. Waalewijn)

arXiv: I 204.5469 (Z.-B. Kang, S. Mantry, J.-W. Qiu)

arXiv: 1303.6952 (D. Kang, C. Lee, I.W. Stewart I)

Breit frame illustration:

 $\tau_1 \sim 1$

 $= \frac{Q}{2}(1,\hat{t}) \equiv \frac{Q}{2}n_J^{\mu}$

 $\tau_1 \rightarrow 0 = 1$ jet $\tau_2 \rightarrow 0 = 2$ jets $\tau_3 \rightarrow 0 = 3$ jets

Groomed 1-jettiness: definition

$$\tau_1 = \frac{2}{Q^2} \sum_{i \in \text{gr. ent.}} \min(q_B \cdot p_i, q_J \cdot p_i) \qquad q_B^{\mu} = x P^{\mu} \qquad q_J^{\mu}$$

 $\tau_1 \rightarrow 0$

 $\tau_1 \sim 1$

 $= \frac{Q}{2}(1,\hat{t}) \equiv \frac{Q}{2}n_J^{\mu}$

Only radiation that passed grooming will contribute to the measurement.

P

Groomed invariant-mass: definition

$$m_{\rm gr.}^2 = \left(\sum_{i \in \text{gr. ent.}} p_i^{\mu}\right)^2$$

No hemispheres, no boundary conditions no jet definitions.

Only radiation that passed grooming will contribute to the measurement. Breit frame illustration: \boldsymbol{P} P $m_{\rm gr.}^2/Q^2 \to 0$ $m_{\rm gr.}^2/Q^2 \sim 1$

Groomed invariant-mass: definition

$$m_{\rm gr.}^2 = \left(\sum_{i \in {\rm gr. ent.}} p_i^{\mu}\right)^2$$

No hemispheres, no boundary conditions no jet definitions.

Breit frame illustration:

observables are related:

$$m_{
m gr.}^2 = Q^2 au_1$$
 -

 $m_{\rm gr.}^2/Q^2 \to 0$

In the back-to-back limit the two

 $+ \mathcal{O}(\tau_1^2)$

Groomed 1-jettiness: Simulations

The groomed observable is mostly insensitive to the rapidity cutoff imposed in the laboratory frame

Groomed 1-jettiness: Simulations

Laboratory frame illustration:

1.6

1.41.21.0

0.8

0.0

ratios

Groomed 1-jettiness: Factorization

SCET = Soft-Collinear Effective Theory

QCD-Collinear factorization ($\tau_1 \sim 1$)

Groomed 1-jettiness: Factorization

$$\frac{d\sigma}{dxdQ^2d\tau_1} = \sigma_0(x,Q)H(Q,\mu)S(Qz_{\rm cut},\mu)\sum_f \mathcal{B}(x,Q^2z_{\rm cut},\mu)\int_{\gamma-i\infty}^{\gamma+i\infty} du\,\frac{\exp(u\tau_1)}{2\pi i}J\Big($$

Hard

Matching between QCD and SCET

Soft

Uniform soft dynamics. Dim-reg: scaleless up-to clustering effects

"Beam"

Incoming hadron matrix element Matched onto the PDF for:

 $Q\sqrt{z_{\rm cut}} \gg \Lambda_{\rm QCD}$

Jet Jet-mass

jet function Final-state collinear

matrix element

 $S = 1 + \mathcal{O}(\alpha_s^2)$

For invariant mass: $au_1
ightarrow m_{
m gr.}^2/Q^2$ $\left(\frac{Q^2}{u},\mu\right) \mathcal{C}\left(\frac{Q^2}{uz_{out}},\mu^2\right)$ **Collinear-soft** The same as for SoftDrop (jet mass). Mode scaling: $p_{cs}^{\mu} \sim Q z_{\text{cut}} \left(\frac{\tau_1}{z_{\text{cut}}}, 1, \sqrt{\frac{\tau_1}{z_{\text{cut}}}}\right)$

Groomed 1-jettiness: Resummation

From RG invariance of cross-section: $\gamma_H + \gamma_S + \gamma_B + \gamma_J + \gamma_C = 0$

Non trivial check of factorization order-by-order in PT

The normalized distribution for [x,Q] bins

NLL versus Pythia @ $\sqrt{s} = 318 \text{ GeV}$

44

NLL versus Pythia @ $\sqrt{s} = 140 \text{ GeV}$

N²LL predictions

scale variations:
$$\times 2 / \times 0.5 \ (\mu_{\mathcal{J}}, \ \mu_{\mathcal{C}}, \ \mu = Q_{\min})$$

$\Lambda_{\rm NP} = 1.4~{\rm GeV}$ uncertainty = 10-20 %

46

Sensitivity to hadronization effects

$$\frac{d\sigma_{\rm had.}}{dx dQ^2 dm_{\rm gr.}^2} = \int d\epsilon \frac{d\sigma}{dx dQ^2 dm_{\rm gr.}^2} \left(m_{\rm gr.}^2 - \frac{\epsilon^2}{z_{\rm cut}}\right) f_{\rm mod.}(\epsilon)$$

$$f_{\rm mod.}(\epsilon) = N_{\rm mod.} \frac{4\epsilon}{\Omega^2} \exp\left(\frac{2\epsilon}{\Omega}\right)$$

Hadronization corrections for jet mass with Centauro and anti-kT

Event (groomed) substructure studies

FastJet framework: effects of soft radiation (optimization, Grooming, WTA, e.t.c)

The necessary files can be found here:

https://github.com/miguelignacio/CentauroletAlgorithm

Other...?

underlying principle: utilize the asymmetric nature of the process

In this talk:

Asymmetric jet clustering in deep-inelastic scattering

N. Sato

Grooming algorithms for DIS: example 1-jettiness

See also:

(Backward) energy-energy correlation (B-EEC) in DIS

arXiv: 2102.05669 In collaboration with: H.T. Li and I. Vitev

<u>arXiv: 2006.10751</u>

In collaboration with: M. Arratia, D. Neill, F. Ringer,

arXiv 2101.02708