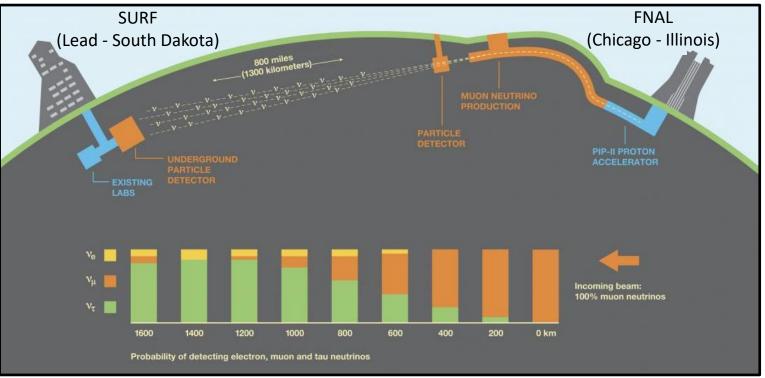
Computing Model of the DUNE Experiment

Matteo Tenti Workshop di CCR 24 - 28 Maggio 2021



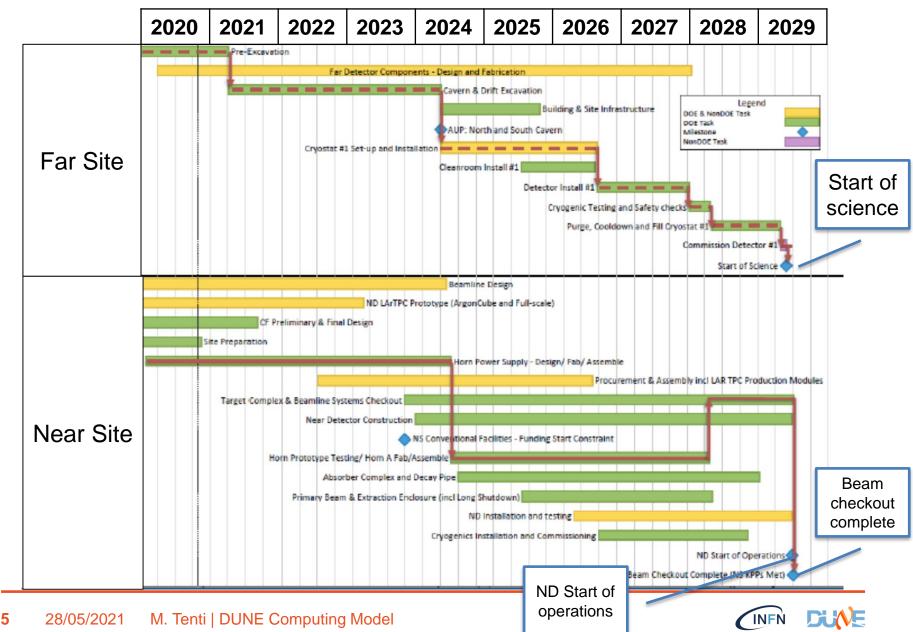
Content

- The DUNE Experiment
 - Far Detector
 - Near Detector
- The Computing Model
 - Unique Challenges
 - The Computing Consortium
 - The Data Management
 - The Networking
 - The Workflow Management
 - Software
- CNAF
- Summary

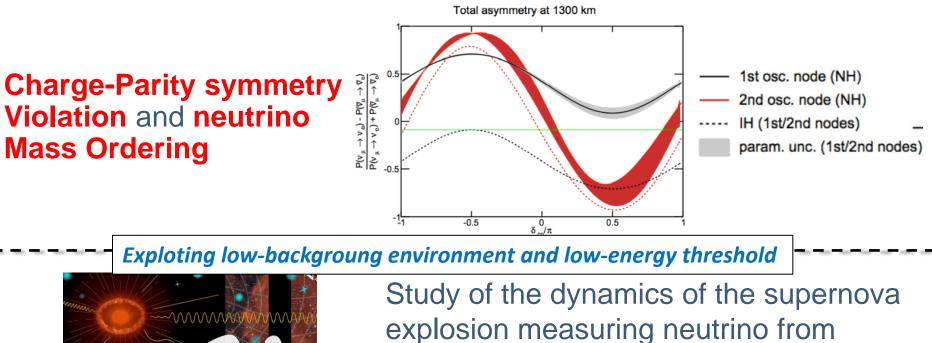
The Deep Underground Neutrino Experiment

Next-generation long-baseline neutrino oscillation experiment

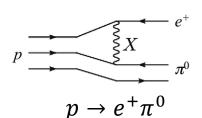
- High intensity, horn focused, wide-band $\nu/\overline{\nu}$ beam produced @ FNAL
- 4 10kt-LArTPC deep underground Far Detector @ SURF
- High capable Near Detector complex @ FNAL

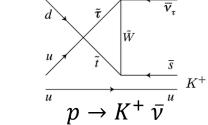

The DUNE Collaboration

- 1347 collaborators
- 204 institutions in 33 countries (+ CERN)



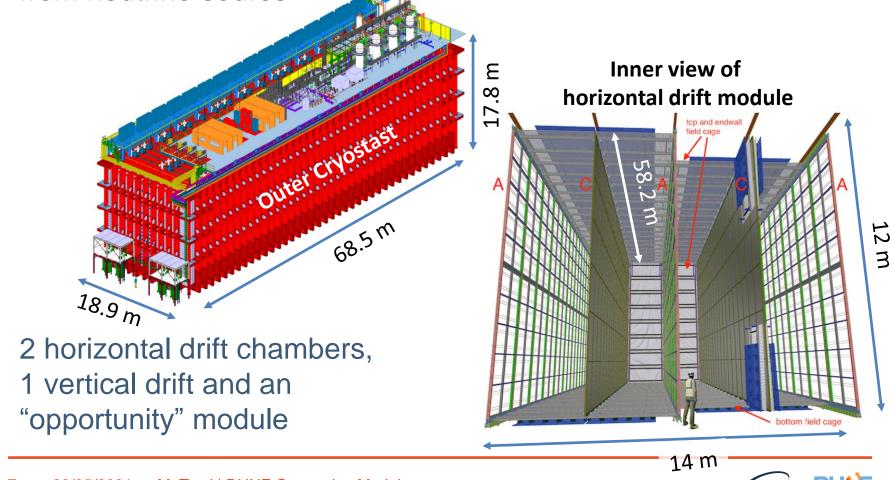
DUNE Timeline


Aims of the DUNE Experiment


Understand the origin of the Matter-Antimatter Asymmetry in the Universe with the precise study of the neutrino oscillations

supernovae neutrino bursts

Search for the **proton decay** process as predicted by GUT theories



Far Detectors

 4 deep underground (1.5 km) 10-kt LArTPC at SURF, 1300 km from neutrino source

FD Technique & DAQ

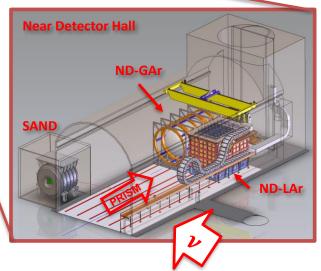
- LAr volume immersed in a homogeneous electric field instrumented with photon detection and charge collection systems
- Local DAQ acquires digitized waveforms and provides triggers:
 - a localized high-energy trigger for beam, cosmic and nucleon decay events
 - an extended low-energy trigger for supernova neutrino bursts

X wire plane waveforms

FD Data Flow

- Triggered data are sent to the surface DAQ, for event building, run control and monitoring
- The event is saved to non-volatile storage, waiting to be
 transferred to FNAL
 Parameter

and archived


 The SURF-FNAL WAN connection bandwidth of 100 Gbit/s imposes a constraint on data rate to be less 30 PB/year

Parameter	Value
TPC Channel Count per Module	384,000
TPC Collection Channel Count per Subdetector (APA)	960
TPC Induction Channel Count per Subdetector (APA)	1600
PDS Channel Count per Module	6000
PDS Channel Count per Subdetector (PDS per APA)	40
TPC analog-to-digital converter (ADC) Sampling Rate	2 MHz
TPC ADC Dynamic Range	12 bits
PDS ADC Sampling Rate	Under study
PDS ADC Dynamic Range	Under study
PDS ADC Readout Length	Under study
Localized Event Record Window	5.4 ms
Extended Event Record Window	100 s
Full size of Localized Event Record per Module	6.5 GB
Full size of Extended Event Record per Module	120 TB

Near Detectors

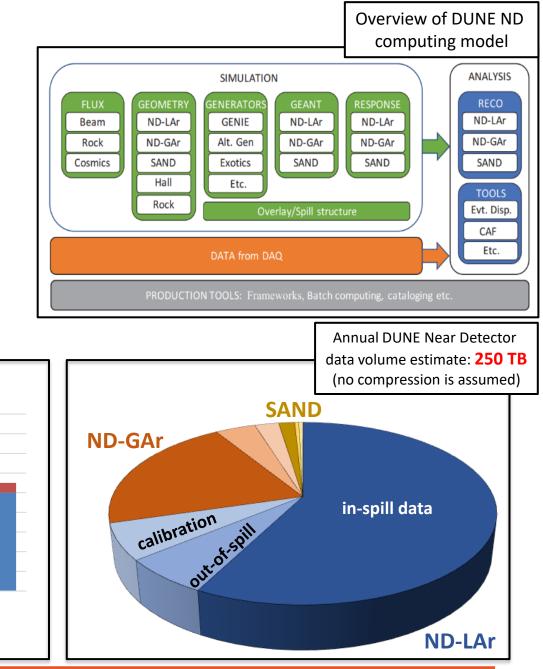
- FNAL Apex of Embankment MI-10 Point of Extraction Near Detector Absorber Hall Target Hall Complex **Primary Beam** Kirk **Service Building** Service Building (I BNE-20) Service Building Road (LBNF-40) (LBNF-30) (LBNE-5) Absorber Hall and Muon Alcove ---636 ft [194 m] ROCK ROCK 725 ft |221 m Target (MCZero) Beamline Near Detector Target to Near Weector - 1880 ft (574 m) Extraction 205 ft Dee Enclosure Detecto Not to Scale
- Essential to reach 1% level control of the systematic uncertainties mandatory to successfully reach the DUNE physics goal
- The aim of ND is to make a high-statistics characterization of the beam close to the source, monitor the beam and provide constraints on the neutrino interaction models

 Main components: highly modular LArTPC (ND-LAr), a magnetized GArTPC (ND-GAr), and a large, magnetized beam monitor (SAND).

Near Detectors Computing

- Heterogeneous detectors
- Variety of simulation, reconstruction and analysis tools

180 160


140 120 100

80

ND-LAr

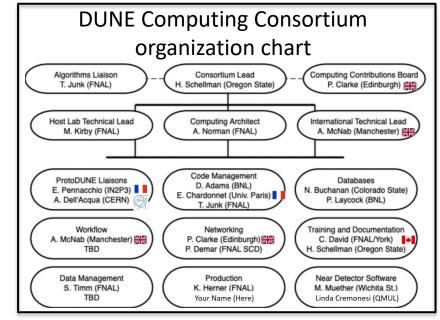
 Integration is currently in progress

CPU time (s) to process one event

ND-GAr

MC gen. + sim. Reconstruction

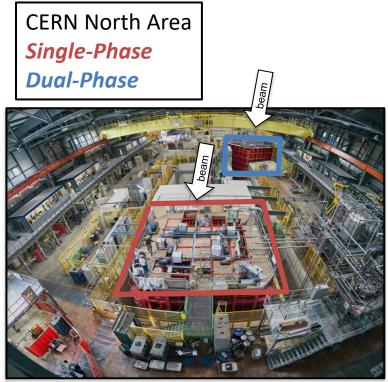
SAND


Unique DUNE Computing Challenges

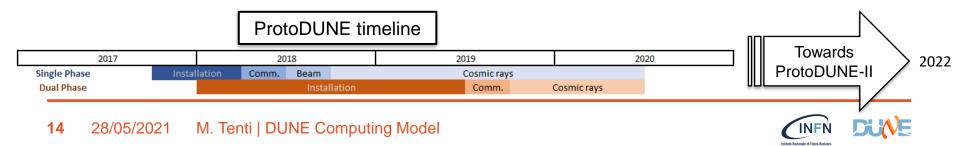
- Need to transfer and store ~30 PB/year from FD at SURF
- Handle **burst transfer and processing** of time-extended trigger records (Supernovae)
 - 180 TB compressed data from 100 s of data 4 hours to FNAL @ 100 Gb/s
 - 30,000 CPUs to analyze data within 4 hours and provide 5° pointing
- Creation of **ROI** after signal processing and noise removal
 - reduce data volume from 6 GB/event
- Calibration data on similar scale as Supernovae (370 TB/year/10kt for laser, 290 TB/year/10kt for PNS)

Computing Consortium

- Mission: work on common software and computing development and formalize resource contributions
- The consortium resource model benefits from existing Grid OSG and WLCG infrastructure developed for the LHC

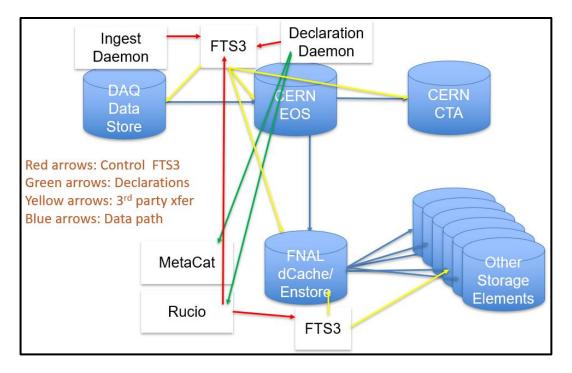


- Use of common computing layers for infrastructure access and use common tools to ease integration of facilities with both the DUNE and LHC computing ecosystems
- Collaborate with the global community to maximize the use of common tools for data movement and storage, job control and monitoring, accounting and authentication
- Opportunities to use current advances in machine learning and pattern recognition as a frontier user of HPC facilities capable of massively parallel processing
- In summary, DUNE's computing strategy is to be **global**, working with partners worldwide, and **collaborative**, as almost all of the computational challenges we face are faced by similar experiments.



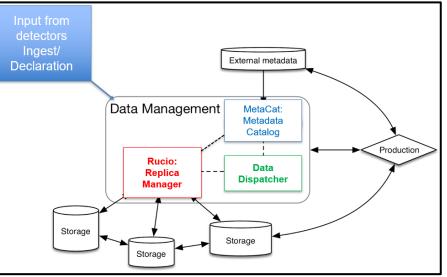
ProtoDUNE

- 1/20 of DUNE detectors
- Main goals: validate components, procedures, performances
- Data volume: ~10 PB of data (~1/2 raw data, ~1/2 reconstruction output products + small amount of MC)
- Computing infrastructure (@ June 2020):
 - 36 computing sites
 - 13 disk only sites, 4 disk + tape sites

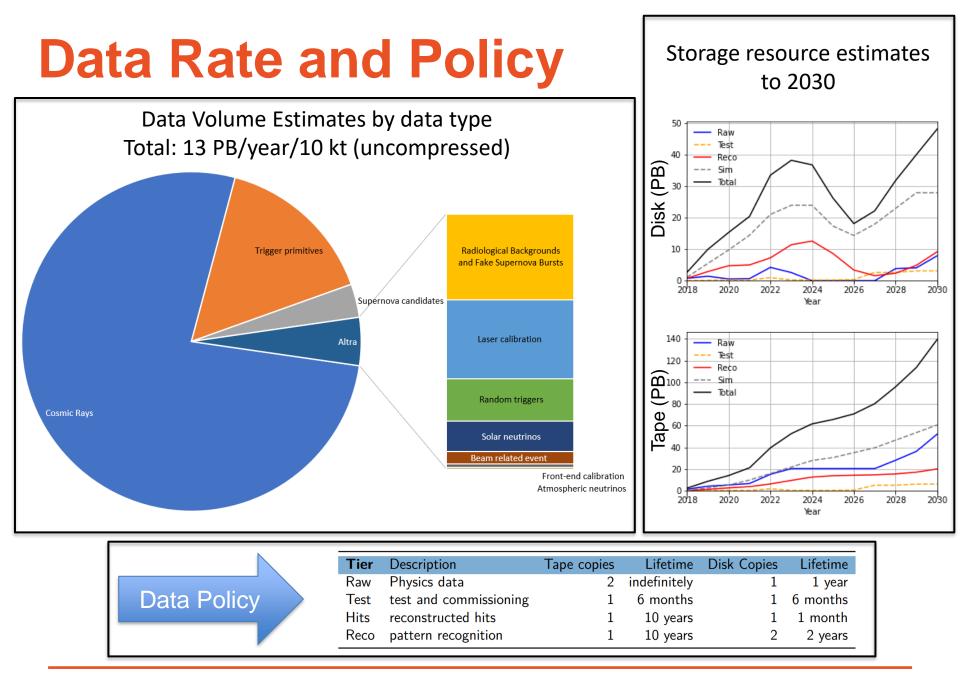

- Data streamed via **xrootd** from the closest location
- Computing resources: a total of 31M wall-hours were delivered with 24M coming from Fermilab (from 06/18 – 06-19)

Data Handling: ProtoDUNE-II conf.

Ingest Daemon

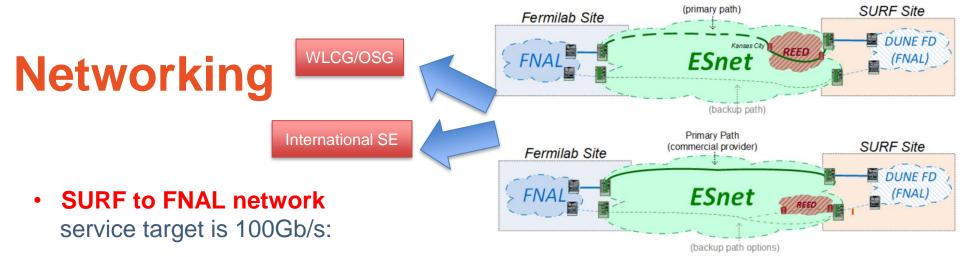

- Detect new files on DAQ data store
- Extract metadata
- Initiate FTS3 3rd-party transfer to first SE (EOS Public)
- Declaration Daemon
 - Declare files to RUCIO and MetaCat
 - Make rules to send to CERN CTA and Fermilab Enstore
 - Delete file from initial DAQ data store

Data Managment System: WIP


- Most of development work involves transitioning code from single database (SAM) to three: Rucio, MetaCat, Data Dispatcher
- Rucio:
 - Declare all files in SAM [~13.5 PB corresponding to ~7M files] into RUCIO [currently ~1.5M]

• MetaCat:

- Script to convert SAM DB into new MetaCat DB
- one-to-one correspondence between RUCIO instance (scope:filenamce) and MetaCat instance (namespace:filename)
- Declare everything to RUCIO before going live with MetaCat
- Transition period: both SAM and MetaCat live in parallel
- Data Dispatcher:
 - Document with requirement is ready; development is now in starting phase
 - Starting from existing SAM code, replace calls to SAM metadata and location information with calls to MetaCat and Rucio respectively

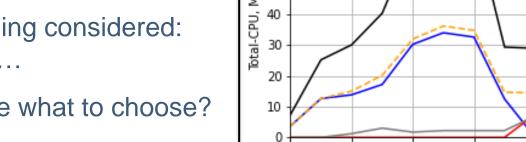


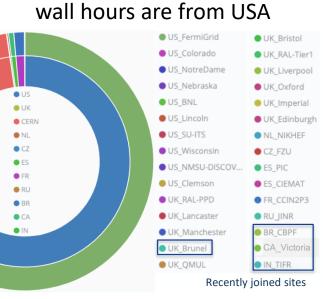
17

28/05/2021

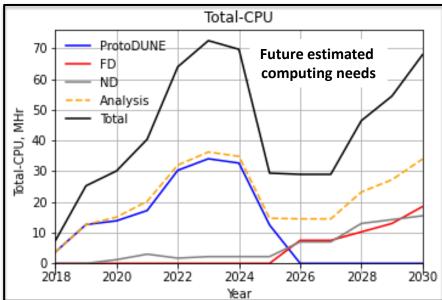
Istitute Nazionale di Fisica Naciere

- Dedicated circuit providing guaranteed bandwidth
- Expectation is bandwidth demand to remain relatively constant
- Backup/failover network service target is (currently...) 10Gb/s
- **Two options** currently being investigated:
 - South Dakota's higher education network (REED)
 - 100GE wave to ESnet PoP in Kansas City
 - 100GE wave from a commercial service provider
- Currently ProtoDUNE Traffic CERN to FNAL through LHCONE over Atlantic
- DUNE will work with **WLCG/International networking** in the future to set requirements for its network needs: Do we need DUNEONE?


Workflow Management PD-SP Prod4

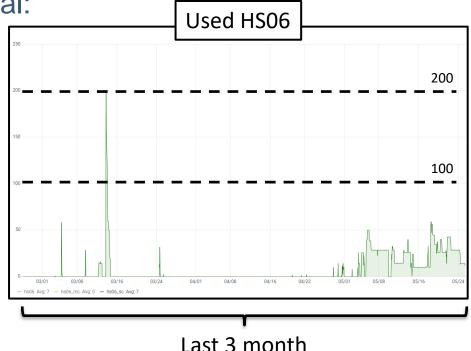

Production

Operations


Management

- Currently
 - job submission is via
 - System Resource/slot provisioning is with **GlideinWMS**
 - Copyback is generally to **FNAL** _ dCache, other sites demonstrated
- ...but which WMS for the future?
 - Evolution of POMS + gWMS or
 - Other systems being considered: PANDA, DIRAC, ...
 - How do we decide what to choose?

In general, ~50% of production


Software: an overview

- The software framework requirements taskforce is charged with identifying the key requirements for the DUNE software framework [report here]
- Currently:
 - DUNE software built for both SL6/7
 - WireCell: TPC simulation and signal processing
 - LArSoft: art-based set of detector-independent software tools for the simulation, reconstruction and analysis of data from liquid argon (LAr) neutrino experiments
 - **Pandora** to ease the process of designing, implementing and running pattern recognition algorithms
 - **CAFana** for oscillation analysis

CNAF

- nu_at_fnal INFN group is used CNAF resource from the beginning of 2020
- Currently, we have at our disposal:
 - A cloud-based machine with16 cores/16GB ram
 - Access to the **batch system**
 - GPFS storage: 15 TB + (3T «local disk»)
- Moreover, CNAF kindly allowed us to access to GPU-machines for some specific projects
- For the **future**?

Summary

- DUNE will be the next-generation long-baseline neutrino experiment
- Main goals: determination of the neutrino mass hierarchy and CP violation + possibly observation of SNB and proton decay
- Event size much bigger than LHC experiment but overall data volume similar. It poses several **challenges** to be addressed
- Details of the **computing model** is currently being finalized
- It foresees the maximal exploitation of the already developed common tools and infrastructure for data management, computing, ecc...
- The role of the CNAF has to be discussed

