Raw Banks SuperPixel Logic

Angelo Carbone, Serena Maccolini, Tommaso Fulghesu

Bologna

March 1, 2021

SuperPixel

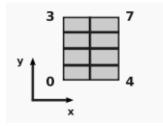


Figure: SuperPixel format

- 8 neighbouring pixels
- Orientation depends on the Sensor to which it belongs to
- First clustering techniques
- FPGA-friendly using Raw Bank

(日) (四) (日) (日) (日)

Raw Bank

A raw bank contains information relative to each hit SuperPixel of a Sensor (192 \times 128 SP)

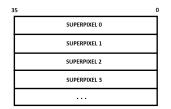


Figure: Raw bank format

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

SP word

Each raw bank is composed by a 36-bit word

1 12	8	7	8
------	---	---	---

- 1 bits for the "hint"
- 12 bits for the SP time information (25ns sampling, 6ps time resolution)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 8 and 7 bits for SP spatial position
- 8 bits for px inside SP

SP Time distribution

Time coordinate associated to a superpixel is $O(ns) \rightarrow 10$ bits



Figure: Time associated to a superpixel wrt event time

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

SP time assumption

The time associated to each pixel is given by two terms:

$$t_{px} = t_{ov} + \frac{1}{v_{part}} * |z_{px} - z_{ov}| * \frac{p}{p_z}$$

Assumption: $t_{SP} = t_{p \times_{first}}$

TEST: RMSE for each SP

RESULT: Few number of SPs with more than 1 hit pixels have RMSE \neq 0 (264 entries vs 74886 SP)

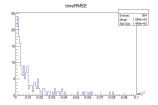
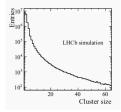
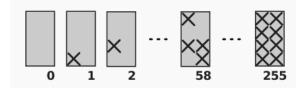


Figure: $RMSE \neq 0$ associated to a superpixel with more than one ON pixel

Next steps

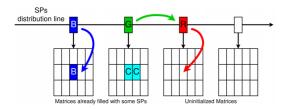

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Test directly with FPGA;
- Build raw bank even using pixel logic;
- Clustering algorithms based on the SP.


FPGA Clustering

WHY?

Large amount of clusters are inside an isolated SP \rightarrow It is possible to use a look-up table (from 0 to 255) to see the active pixels inside the SP and creates the clusters (2x faster)


(日) (四) (日) (日) (日)

FPGA Clustering

HOW IT WORKS?

STEP 1: Matrices with dimension 5×3 SPs (10×12 pixels) at every clock cycle change SP input.

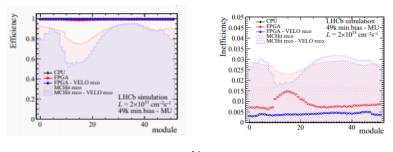
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

FPGA Clustering

HOW IT WORKS?

STEP 2: Construction of cluster candidate from the **SEED** pixel.

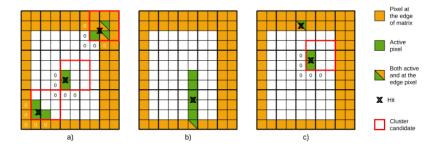
TOPOLOGY


To every seed pixel is associated a lookup table with *flags* which characterize the cluster

Meaning	Flag
Isolated	101
Overflow	100
Self-contained & edge	011
Self-contained & not-edge	010
Not-self-contained & edge	001
Not-self-contained & not-edge	000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Clustering efficiency



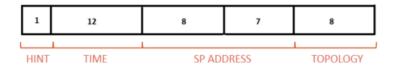
$$\epsilon = \frac{N_{MC_{linked}}}{N_{MC}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $N_{MC_{linked}} = \#$ hits with linked reconstructed cluster. $N_{MC} = \#$ reconstructible hits

Cluster Inefficiency

FPGA efficiency depends on VELO occupancy


• larger prob. of non isolated SPs and larger cluster dimensions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

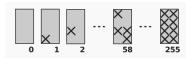
• larger prob. of overflow

Clustering based on Raw Bank

Each raw bank is composed by N 36-bit SP word:

The HINT specifies the kind of SP

• If HINT = 0 : ISOLATED SP (ISP) \rightarrow Clusters are directly retrieved from SP.


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• If HINT = 1 : NON-ISOLATED SP \rightarrow Save all SPs in a SP-CACHE .

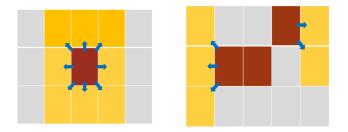
Isolated SP

FPGA-based

CPU-based

8-bit Look Up Table to determine the clusters associated to the ISP

Recursive method to determine clusters


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

of Reconstructed clusters: FPGA method: 1772 CPU method: 1772

 $\epsilon_{ISP} = 100\%$

Neighbouring SP

1. Construction of the reading matrices (5 \times 3 SP) from SPs in the SP-CACHE

2. Research of the **seed pixel** and construction of the **cluster candidate** (CC)

2	5	8
1	4	7
0	З	6

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Neighbouring SP

FPGA-based

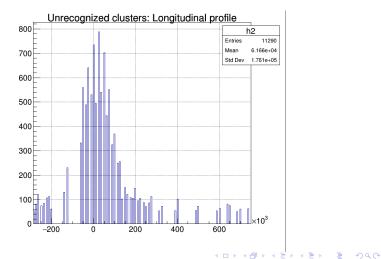
9-bit Look Up Table to determine the clusters associated to the CC

CPU-based

Recursive method to determine clusters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

of Reconstructed clusters: FPGA method: 1201 CPU method: 1206

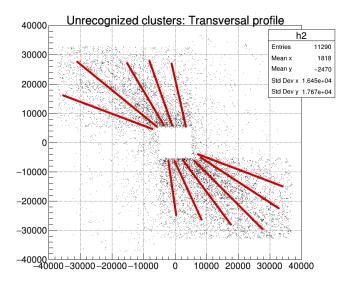

 $\epsilon_{NSP} = 96.2\%$

TOTAL: $\epsilon = \frac{2932}{2978} = 98.5\%$

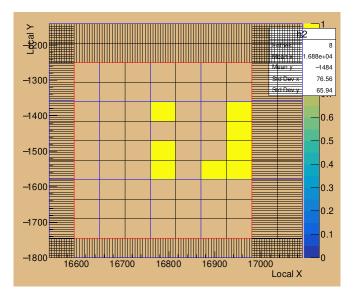
Inefficiencies

On large statistics (737541 clusters), we obtained:

$$\epsilon = \frac{\# \text{ FPGA-reco clusters}}{\# \text{ CPU-reco clusters}} = 98.5\%$$

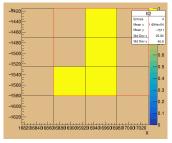


X-Y Plane

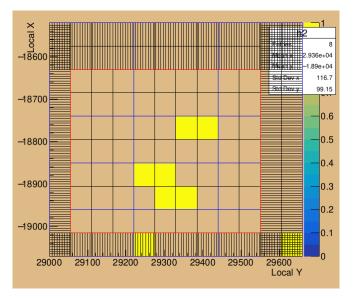

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

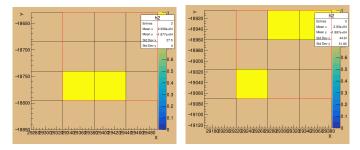
Problem: region asymmetry

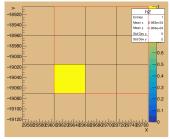

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 - のへで


Some examples: region 0

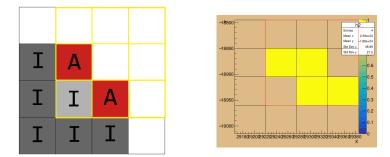
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで


FPGA-Recognized clusters

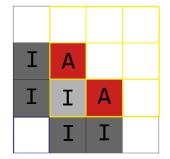

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

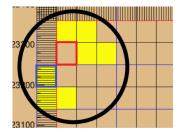

Some examples: region 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで


FPGA-Recognized clusters

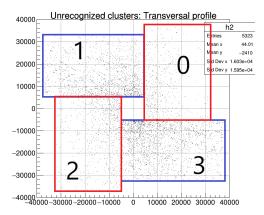
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ


Introduction of a new pattern



Introduction of the new pattern to take in consideration the off-diagonal tracks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@


Modification of the new pattern

Problem in the recognition of some close clusters: modification of previous pattern.

Results

	CPU-Reconstructed	Unreconstructed	Inefficiency[%]
HORIZONTAL REGIONS	737541	4006	1.03
VERTICAL REGIONS	737541	1317	0.34

Maybe a MS problem??

Build again the RB switching off the boolean for MS. The number of active pixel are reported as function of the region.

REGION #	With MS	Without MS
0	203834 (+0.5%)	202246 (+0.35%)
1	202506 (- <mark>0.15%</mark>)	202423 (+0.43%)
2	203564 (+0.37%)	201054 (- <mark>0.24%</mark>)
3	201314 (- <mark>0.73%</mark>)	200431 (-0.54%)
TOTAL	811218	806154

Also trials with different events and considering only prompt particles, but same problem! Any ideas for any test to perform?