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Matter in Astrophysical Phenomena

Core-collapse Proto-neutron Mergers of compact
supernovae stars binary stars

Baryon Density(n0) 10−8 − 10 10−8 − 10 10−8 − 10

Temperature(MeV) 0− 30 0− 50 0− 100

Entropy(kB) 0.5− 10 0− 10 0− 100

Proton Fraction 0.35− 0.45 0.01− 0.3 0.01− 0.6
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I Phase diagram corresponding to the APR EOS at a lepton fraction of 0.3.
From Eur. Phys. J. A (2019) 55 :10
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Supranuclear EOS - Phenomenological Approaches

I Skyrme: V̂NN =
∑

i<j V̂ij +
∑

i<j<k V̂ijk , zero-range.

Evaluated in the Hartree-Fock approximation ⇒ H = ~2

2m∗ τ + V (n) .

I Akmal-Pandharipande-Ravenhall (APR): VNN = v18,ij + VIX ,ijk + δv(Pij ) .
Extended to infinite matter using Variational Chain Summation then fitted to a
Skyrme-like functional.

I Relativistic meson exchange in the mean-field approxiation (= negligible
meson-field fluctuations, uniform and static system).

I Momentum-dependent interactions of the Yukawa type, borrowed from heavy-ion
physics.
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Supranuclear EOS - Microscopic Approaches

I High-precision interactions fitted to NN scattering data
I meson-exchange models

e.g. Nijmegen, Paris, Juelich-Bonn
I sums of local operators

e.g. Urbana, Argonne

I Interactions from chiral EFT

I RG-evolved potentials

Extension of the above to bulk matter by a variety of techniques: SCGF, BHF,
variational, etc.
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Subnuclear EOS

I Lattimer-Swesty (LS): Ftotal = FN + Fα + Fbulk + Fe + Fγ

I Single representative species of heavy nucleus [single-nucleus approximation (SNA)];
described by the compressible liquid-drop model: FN = Fbulk,in + Fs + FC + Ftr .

I α-particles represent light nuclei; treated as non-interacting Boltzmann gas having hard
sphere interactions with nuclei [excluded volume (EV)]: Fα = (1− u)nαfα

I Nucleons have hard-sphere interactions with α’s and nuclei:
Fbulk = (1− u)(1− vαnα)nout fbulk

I Pasta : Use smooth generalized functions which modify FC and FS appropriately.

I Virial expansion:
I Nondegenerate limit expansion of the grand potential in small fugacity,

z = exp[(µ− m)/T ]� 1 .

I Coefficients depend on experimental scattering phase shifts ⇒ Model-independent
predictions for the equation of state.

I Nuclear Statistical Equilibrium (NSE):

I Statistical ensemble of nucleons and nuclei in thermodynamic equilibrium

I Maxwell-Boltzmann statistics

na = γa exp(µaT )λ−3 ; λ =
(

h2

2πmaT

)1/2
; µa = Naµn + Zaµp

I Abundances determined by Saha equation with nuclear binding energies as input

Xa = γa
ma∑
a mana

λ−3 exp
(
µa+Ba

T

)
; Ba = Zamp + Namn − ma .
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Quark Phase

I MIT Bag, L =
∑

i [ψi (i /∂ −mi − B)ψi + Lint]Θ

I vMIT, Lint = −Gv
∑

i ψγµV
µψ + (m2

V /2)VµVµ

I vBag, Lint = Gv
∑

i (ψγµψ)2

I vNJL, L = ψ(i /∂ − m̂0)ψ + Gs
∑8

k=0[(ψλkψ)2 + (ψiγ5λkψ)2]

−K [detf (ψ(1 + γ5)ψ) + detf (ψ(1− γ5)ψ)] + Gv
∑

i (ψγµψ)2

I Quarkyonic: Above a transition density, the low-momentum degrees of freedom
inside the Fermi sea behave as noninteracting quarks, whereas at
higher momenta they are subjected to confining forces resulting in
baryons.

I CSS, ε(p) =

{
εNM(p) p < ptrans

εNM(ptrans) + ∆ε+ c−2
QM(p − ptrans) p > ptrans

I Phase transition

I 1st order: Maxwell (σs →∞) vs. Gibbs (σs = 0)

I higher order/crossover
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Applications - Neutron Stars

I Matter in β-equilibrium supported against gravitational collapse by neutron
degeneracy.

I Structure determined by simultaneous solution of:
I Interior mass, m(r) = 4π

∫ r
0
ε(r ′)r ′2dr ′

I Hydrostatic equilibrium, dp
dr = − Gm(r)ε(r)

r2

[
1 + p(r)

ε(r)

] [
1 + 4πr3p(r)

m(r)

] [
1− 2Gm(r)

r

]−1

I EOS, p = p(ε)

I Constraints
I Largest observed mass, M = 2.01M�

(binaries)

I Largest observed frequency, Ω = 114 rad/s
(pulsars)

I Inferred radius range, 9 km ≤ R ≤ 15 km
(photospheric emission, thermal spectra)
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Applications - Core-Collapse Supernovae (CCSN)

I A massive star (M > 8M�) forms an iron core; it cannot produce energy via
fusion and contraction ensues.

I As the density increases, electron capture becomes favorable and neutrinos are
produced: p+ + e− → n + νe

I When the Fermi energy of neutrinos gets large enough, they become trapped and
β-equilibrium is achieved.

I At this point the entropy per nucleon is S ' 1. Dripped neutrons require S ' 8
thus nuclei persist until the core contracts to n ∼ no . Then nucleonic matter
emerges.

I Nucleons are compressed to n ∼ 3no where the repulsive core of the strong
interaction dominates their attraction and inhibits further contraction.

I The core rebounds and creates a shock wave that disrupts the star.

I EOS relevance
I EOS controls electron capture rates and therefore the neutrino signal.
I GW amplitude related to PNS compactness and the high-density properties of the EOS.
I Homologous core, time to collapse
I Reaction networks
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Applications - Binary Neutron Star Mergers (BNSM)

I Relativistic binaries not in equilibrium : Gravitational wave (GW) emission leads
to orbital decay.

I Early stage: only gravitational interactions, GW signal contains information for
the masses of the components.

I Coalescence stage: Tidal disruption of the lower-mass star, mass transfer onto
the more massive one. Mass transfer rate depends on C = MNS/RNS and
reflected in GW signal. Ejected matter is very neutron-rich and can lead to heavy
element formation via the r-process.

I Late stage: Black hole or hypermassive neutron star formation.

I EOS relevance
I Tidal disruption of NS during coalesence of

BH-NS binary depends on the stiffness of
the EOS. GW frequency sensitive to orbital
frequency at disruption.

I r-process production rates and abundances
depend on the composition of the ejecta and
thus the EOS.

I Tidal deformability, Λ = 2
3 k2

(
R c2

G m

)5
.

I g-mode frequencies: N2 = g2
(

1
c2
e
− 1

c2
s

)
eν−λ

g = −∇[p/(ε + p)]
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Plans

I Pions: thermally-excited and collective modes.

I Quarks: Identify binary-neutron-star-merger observables that can establish the
presence of deconfined quarks in neutron star interiors.

I Beyond mean-field: Needed for the study of phase transitions, quantum
fluctuations at lower densities, and the transport properties of hot and dense
matter.

I Phase-equivalent potentials: to address the limitations of the virial expansion and
the excluded volume approximation.

I Relax single-nucleus approximation: so that processes requiring a full nuclear
ensemble can be accommodated.

I Microscopic treatment of nuclear properties: to replace liquid drop model and
explore the role of deformed nuclei in thermal effects.

I Astrophysical applications.
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