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A storm of waves
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On 15th September 2015, LIGO 
interferometers directly sensed 
the distor<ons in space<me 
caused by passing GWs generated 
by two colliding black holes nearly 
1.3 billion light years away.

O1 & O2/2015-2017 events O3/2019 alerts

Phys. Rev. LeH. 116 061102 (2016)



The right instrument: GW interferometer

Inherently differential 

“Easy” to scale up 

Broadband

The winning team:
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A small displacement… really small
Length variation

Length
≈ 10−21
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Equivalent to measure a displacement of 
the size of one atom compared to the 

Earth – Sun distance!


Need to be sure that nothing else is 
moving the mirrors by this tiny amount:


ground vibrations, for example, are 
billions of times too big!



The Coating Thermal Noise issue
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VIRGO sensitivity (from the AdV+ roadmap)
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Thermal Noise in IF Mirrors

• Oversimple: kT of energy per mechanical mode, viscous damping
– moves front of mirror w.r.t. center of mass

• For coating dominated noise:
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Coating Thermal Noise (CTN) limits the 
detection band in the “bucket“ (middle 
frequencies) which is the most sensitive 

region of the GW detectors.


Oversimple picture: KT of energy per 
mechanical mode, viscous damping - 
moves front of the mirror with respect 

the center of mass
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State of the art
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Mechanical loss angle after deposition and 
thermal treatment

Granata et al, Class. Quantum Grav. 37 (2020)

Amorphous coatings deposited 
by Ion Beam Sputtering (IBS) 

Ti:Ta2O5   High Index (n=2.05-2.09)


SiO2         Low Index (n=1.44-1.47)

10 mm of coa<ng produces 
more thermal noise than 10 cm 
of substrate.



How can we do better?
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Materials Deposition

Post-deposition 
treatments

Absorption and 
Metrology

Oxides ●
Mixing ●

High Index ●
Silica Glasses  

   

Nitrides ●
Fluorides ●

High Coordina;on ●
Number Glasses 
SiN, GaN, SiC, etc

  

Origin of absorption ●
Loss measurement ●

protocol   
Thermo-elastic ●

effect   

● Annealing
● Outgassing and

chemical status
● Controlled 
crystallization

● High Temperature
● Nano-layering

‒ High index
‒ Low index
‒ HR stack

Developing new coating materials for AdV+   

- Factor 3 reduction of coating losses is targeted


- Same absorption and scattering

A recipe 

- A material


- A deposition method


- A post-deposition treatment



The different activities
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Synthesis
§ Coating deposition
§ Heat treatments

Macroscopic
characterization

§ Q measurements
§ Absorption 

measurements
§ Dielectric response
§ Elastic constants
§ Density

Microscopic
characterization

§ TEM, SEM
§ Raman, Brillouin
§ XRD, XPS, XAS
§ AFM

Modeling
§ Structure
§ TLS relaxations



The Virgo Coatings R&D collaboration 
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Credits: G. Cagnoli 

The Virgo Coatings R&D
Collaboration

GENOVA

! GENOVA
♦ Ellipsometry
♦ Optical properties
♦ AFM, XPS
♦ Raman

! SALERNO/SANNIO
♦ IAD
♦ SEM,TEM,AFM and XRD
♦ nanolayered composites 

and Mie-metamaterials

URBINO

! URBINO
♦ GeNS Cryo
♦ FEA

SALERNO
SANNIO

! PERUGIA-CAMERINO
♦ Cantilevers & GeNS Cryo
♦ Physics of Glasses
♦ Brillouin, Raman
♦ SEM, XRD, XAS

VIRGO

LMA

! LMA
♦ IBS HighT, IAD
♦ GeNS [300-10] K
♦ FEA
♦ Optical metrology

♦ Sample production
♦ Characterization

ROMA 1

PISA

! PISA
♦ Study of the crystallization processes
♦ Physics of deposition and 

ultrastable glasses
♦ Molecular Dynamics and Modelling 
♦ Calorimetry and Dielectric response

! ROMA 1
♦ Structural

characterization
♦ Thermobalance

! ROMA 2
♦ Laser Polishing
♦ GeNS 300K 1’’
♦ FEA and AFM
♦ XPS
♦ Ellipsometry

ROMA 2
PERUGIA

PADOVA

! PADOVA
♦ Mag. Sputtering
♦ XRD High T

! g-MAG
♦ Pulsed Laser Dep.
♦ Rapid Th. Annealing
♦ Raman, Brillouin
♦ Physics of Glasses
♦ Molecular Dynamics

g-MAG

Formed on January 2017

Other groups (from KAGRA and
Belgium) are interested to join



Molecular Dynamics, a theoretical guidance
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Simulations and modeling are standard tools for studying glasses and 
can be of help in the material selection:


- computation of losses (quality factor)


- microscopic characterization of loss mechanisms


- modeling of deposition methods


- estimate of crystallization and glass transition temperature 


…




Microscopic picture of dissipation in glasses

11 TAUP 2019 - TOYAMA

Too fast relaxa,on

Too slow relaxation

Relaxation producing losses

!

!

!

At low frequencies (kHz range), dissipation dominated by anharmonic effects: 

Interactions of mechanical waves with thermally-activated relaxations (TAR)

Reaction coordinate

En
er

gy

Δ
"#!

#"

Two-Level System (TLS) model: dissipation dues 
to atomic motion during transitions from one well 

to another, which are possible via coupling 
between external strain and thermal motion. 


Only transitions with a relaxation time of the same 
order of the period of the strain wave propagating 

in the material produce mechanical losses 




A new modeling approach
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oscillatory 
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Molecular Dynamics  
Mechanical Spectroscopy (MD-MS)

Apply numerical strain and 
compute the stress


Losses computed from phase shift 

!!" = tan & = '′′
'′ Theory-independent approach



Mechanical losses in simulated 
amorphous Ta2O5
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fast quench slow quenchGlasses by cooling the liquid 

 Slowing down the cooling rate to 
replicate experimental annealing

We extrapolate from GHz to the acoustic frequencies  
(range of interest for applications in  GW detectors) 


Puosi, Fidecaro, Capaccioli, Pisignano and Leporini 
Phys. Rev. Res. 1 033121 (2019)



Comparing with experimental data
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d4: M. Granata et al., PRD 93, 012007 (2016). 
d5 I.W. Mar<n et al. Class. Quantum Grav. 27 225020 (2010).  
d6: G. Vajente et al. Class. Quantum Grav. 35 075001 (2018). 
d7: M. Principe et al., PRD 91, 022005 (2015).  

d1: M. Granata et al., in prepara<on 
d2: M. Granata et al., PRD 93, 012007 (2016)  
d3: R. Robie, Ph.D. thesis, Univ. of Glasgow (2018). 



A microscopic perspective on dissipation
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Color code: magnitude of non-affine displacement

Slowly quenched glass 
T=300 K 
f=109 Hz
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a  b  s  t  r  a  c  t  

The  mechanisms  governing  mechanical  dissipation  in  amorphous  tantala  are  studied  at  microscopic  scale  
via  Molecular  Dynamics  simulations,  namely  by  mechanical  spectroscopy  in  a  wide  range  of  tempera-  
ture  and  frequency.  We  find  that  dissipation  is  associated  with  irreversible  atomic  rearrangements  with  
a  sharp  cooperative  character,  involving  tens  to  hundreds  of  atoms  arranged  in  spatially  extended  clus-  
ters  of  polyhedra.  Remarkably,  at  low  temperature  we  observe  an  excess  of  plastically  rearranging  oxygen  
atoms  which  correlates  with  the  experimental  peak  in  the  macroscopic  mechanical  losses.  A  detailed  
structural  analysis  reveals  preferential  connections  of  the  irreversibly  rearranging  polyhedra,  correspond-  
ing  to  edge  and  face  sharing.  These  results  might  lead  to  microscopically  informed  design  rules  for  re-  
ducing  mechanical  losses  in  relevant  materials  for  structural,  optical,  and  sensing  applications.  

© 2020  Acta  Materialia  Inc.  Published  by  Elsevier  Ltd.  All  rights  reserved.  

1.  Introduction  

Mechanical  dissipation  in  solids  is  a  key  topic  in  condensed  

matter,  with  very  high  scientific  and  technological  significance.  

Contrary  to  crystals,  where  mechanical  losses  via  energy  dissi-  

pations  are  mainly  due  to  lattice  defects,  dislocations  and  im-  

purities,  in  disordered  materials  such  as  amorphous  solids  and  

glasses  diverse  phenomena  can  play  a  role,  depending  on  tempera-  

ture  and  frequency.  For  instance,  restricting  to  temperatures  above  

~ 10  K  where quantum tunneling is negligible and moving from  

THz  to  acoustic  frequencies,  the  dominant  contributions  to  dissi-  

pation  span  from  Rayleigh  scattering  [1–5]  ,  to  Akhiezer  damping  

[1,4,6–8]  ,  thermoelastic  damping  [6,9,10]  and  thermally  activated  

relaxations  [8,11,12]  .  

Mechanical  losses  in  materials  can  be  estimated  assuming  a  

cyclic  dissipation  point  of  view,  namely  focusing  on  the  energy  

loss  during  cyclic  mechanical  loading.  In  this  way,  considering  the  

loss  angle  φ between  an  imposed  oscillatory  strain  and  the  corre-  

sponding  stress  in  the  material,  the  mechanical  losses  are  obtained  

via  the  reciprocal  quality  factor,  Q  −1  =  tan  φ.  Dynamical  mechani-  

cal  spectroscopy  (DMS)  is  widely  used  to  study  liquids  and  glasses  

experimentally  [13–15]  as  well  as  numerically  through  molecular  

dynamics  (MD)  simulations  [16–20]  .  

∗ Corresponding  author.  
E-mail  address:  francesco.puosi@pi.infn.it  (F.  Puosi).  

In  a  recent  paper  [21]  ,  we  applied  DMS  by  simulations  to  in-  

vestigate  the  mechanical  losses  in  amorphous  tantala  (Ta  2  O  5  )  in  

a  wide  range  of  frequency  and  covering  room  temperature  as  

well  as  cryogenic  regimes.  The  results  from  simulations  remarkably  

agreed  with  the  experimental  data  available  for  annealed  amor-  

phous  films,  especially  in  terms  of  the  temperature  dependence  of  

the  quality  factor.  

Here,  we  extend  this  analysis  and  investigate  the  microscopic  

processes  which  are  responsible  for  the  mechanical  losses  in  amor-  

phous  tantala.  There  have  been  a  few  numerical  studies  on  oxide  

glasses  [12,19,22]  ,  and  more  specifically  on  tantala  [23–25]  ,  aim-  

ing  to  clarify  the  atomic  origin  of  energy  dissipation.  The  source  

of  dissipation  has  been  suggested  in  low-energy  excitations  involv-  

ing  small  groups  of  atoms  with  temperature-dependent  extension  

and  organization.  Such  excitations  are  commonly  modeled  in  the  

framework  of  the  two-level  system  (TLS)  model  [26,27]  ,  i.e.  as  tran-  

sitions  between  pairs  of  local  energy  minima  in  the  potential  en-  

ergy  landscape  (PEL).  At  high  temperature,  above  T  ~ 10  K  where  

tunneling  across  the  barrier  becomes  less  efficient,  transitions  are  

mainly  due  to  thermally-activated  processes  which  may  interact  

with  mechanical  excitations  propagating  in  the  solid.  Within  this  

approach,  mechanical  losses  are  indirectly  estimated  via  a  suitable  

exploration  of  the  PEL  and  a  discrete  sampling  of  TLSs.  

At  variance  with  TLS  modeling,  in  this  work  we  adopt  an  al-  

ternative  approach  to  study  dissipation  at  the  microscopic  level,  

building  on  mechanical  spectroscopy.  This  allow  us  to  directly  

identify  the  atomic  rearrangements  which  govern  dissipation  in  

https://doi.org/10.1016/j.actamat.2020.09.054  
1359-6454/© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
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Next steps: new materials
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Silicon nitride Si3N4:  candidate as coating material for AdV+ ALigo+  
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Fig. 7. Characterization of IBS SiNx coatings. Left: internal friction of our first [31]
and latest coating samples annealed in air at 900 �C for 10 hours, compared to current
values of Ta2O5-TiO2 coatings annealed in air at 500 �C for 10 hours (from Fig. 2).
Right: extinction coe�cient of our first [31] and latest coating samples as a function of
the annealing temperature Ta (in-air annealing time is 10 hours, Ta = 0 �C corresponds
to as-deposited coatings).

a variety of deposition techniques [35–37] have shown that substrate heating during deposition is
a promising technique to obtain coatings with very low internal friction (10�6 < �c < 10�4) at
room and cryogenic temperature.

The high-temperature deposition of IBS Ta2O5 coatings has also been explored [38], but it
seems to have negligible impact on the room-temperature internal friction of coatings deposited
at 150 < Ts < 500 �C.

At LMA, we have now completed the installation of a rotating heating substrate holder, to
deposit uniform single layers and HR coatings up to Ts = 800 �C. Soon we will use it to
test the deposition of Ta2O5 coatings at temperatures right below their crystallization limit
(500 < Ts < 650 �C) [31] and of SiO2 and silicon nitride coatings, whose crystallization occurs
beyond 900 �C [31].

3.7. Composite high-index layers

In order to replace the current Ta2O5-TiO2 high-index layers of GW interferometers, the use of
stacks of TiO2 and SiO2 with nm-thick layers has been proposed [39–41]. Though they have
a lower refractive index (n = 1.76) [41], these nm-layered stacks can be annealed at higher
temperature (700 < Ta < 800 �C) and have low internal friction at temperatures below 100
K [41]. However, to date, the deposition of a full HR stack embedding composite layers is yet to
be achieved.

3.8. Multi-material HR stacks

In order to conjugate low internal friction and low optical absorption, HR stacks composed of at
least three di�erent coating materials have been proposed [42, 43]. In this multi-material design
(like, for instance, in Ta2O5/SiO2/aSi [42], Ta2O5-TiO2/SiO2/SiNx [44] and Ta2O5/SiO2/HfO2-
SiO2/aSi [45] stacks), the low-friction, absorptive layers are buried under the low-absorption,
dissipative layers.

Multi-material HR stacks might be a viable solution to substantially decrease CTN and, at
the same time, to fulfill the optical requirements of future GW detectors (of cryogenic ones in

M. Granata et al., Appl. Opt. 59, A229-A235 (2020)
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and latest coating samples annealed in air at 900 �C for 10 hours, compared to current
values of Ta2O5-TiO2 coatings annealed in air at 500 �C for 10 hours (from Fig. 2).
Right: extinction coe�cient of our first [31] and latest coating samples as a function of
the annealing temperature Ta (in-air annealing time is 10 hours, Ta = 0 �C corresponds
to as-deposited coatings).

a variety of deposition techniques [35–37] have shown that substrate heating during deposition is
a promising technique to obtain coatings with very low internal friction (10�6 < �c < 10�4) at
room and cryogenic temperature.

The high-temperature deposition of IBS Ta2O5 coatings has also been explored [38], but it
seems to have negligible impact on the room-temperature internal friction of coatings deposited
at 150 < Ts < 500 �C.

At LMA, we have now completed the installation of a rotating heating substrate holder, to
deposit uniform single layers and HR coatings up to Ts = 800 �C. Soon we will use it to
test the deposition of Ta2O5 coatings at temperatures right below their crystallization limit
(500 < Ts < 650 �C) [31] and of SiO2 and silicon nitride coatings, whose crystallization occurs
beyond 900 �C [31].

3.7. Composite high-index layers

In order to replace the current Ta2O5-TiO2 high-index layers of GW interferometers, the use of
stacks of TiO2 and SiO2 with nm-thick layers has been proposed [39–41]. Though they have
a lower refractive index (n = 1.76) [41], these nm-layered stacks can be annealed at higher
temperature (700 < Ta < 800 �C) and have low internal friction at temperatures below 100
K [41]. However, to date, the deposition of a full HR stack embedding composite layers is yet to
be achieved.

3.8. Multi-material HR stacks

In order to conjugate low internal friction and low optical absorption, HR stacks composed of at
least three di�erent coating materials have been proposed [42, 43]. In this multi-material design
(like, for instance, in Ta2O5/SiO2/aSi [42], Ta2O5-TiO2/SiO2/SiNx [44] and Ta2O5/SiO2/HfO2-
SiO2/aSi [45] stacks), the low-friction, absorptive layers are buried under the low-absorption,
dissipative layers.

Multi-material HR stacks might be a viable solution to substantially decrease CTN and, at
the same time, to fulfill the optical requirements of future GW detectors (of cryogenic ones in

Experiments

Simulations



Next steps: Machine Learning methods

18

ARTICLES
https://doi.org/10.1038/s41567-020-0842-8

1DeepMind, London, UK. 2Google Brain, Mountain View, CA, USA. 3These authors contributed equally: V. Bapst and T. Keck. ✉e-mail: vbapst@google.com

Certain liquids undergo arrested dynamics when cooled suf-
ficiently quickly. Over a small range of temperatures, the 
relaxation time of the liquid increases by orders of magni-

tude until it falls out of equilibrium and into a disordered solid-like 
state1–3. This glass transition is a ubiquitous phenomenon, occurring 
in granular materials, colloidal suspensions and biological cells, and 
is observable experimentally and numerically. Understanding the 
causes of this slowdown is a major open research question4. Unlike 
in standard phase transitions, the dramatic change in dynamics is 
not obviously correlated with static properties of the system: the 
system behaves like a solid but still appears like a liquid, and there 
is no clear correlation length that diverges near the transition. In 
this context, studies in the past decade have focused both on under-
standing the nature of the dynamical relaxation of glasses5,6 and, 
later, on determining structural markers of the transition7–9. As 
stated in a recent review4 “the main difficulty [when searching for 
static correlations] is that one does not know what one is looking 
for”—which indicates that machine learning may be well-suited for 
automatically discovering structural predictors10.

First applications of machine learning to glassy systems dynam-
ics discovered that machine-learned softness could predict dynami-
cal properties11,12, inspiring a family of work extending softness 
to various systems, including polycrystals and low-dimensional 
films13–15. These works rely on support vector machines (SVMs)16 
and use physical intuition to precompute heuristic features for each 
particle. Although these efforts have shown that softness can predict 
whether particles will rearrange in the near future, they were unable 
to yield much insight into long-time dynamics.

While the SVM approach treats each input independently, a dif-
ferent family of machine learning models, graph neural networks 
(GNN)17–19, use the graph structure of their input. These models 
learn embeddings for the nodes and edges of their input graphs, 
updating these embeddings via learned message-passing rules. As 
such, they do not require human-defined features and can leverage 
the power of deep networks for feature discovery. Moreover, they are 
inherently relational and can learn features that pertain to the rela-
tionship between entities20. They have been successfully applied to 
forward dynamics prediction since the original work on interaction  

networks18, but only on systems where the equations of motion are 
directly integrable21–23. In our case, the timescales involved are of 
such length that the network must make predictions after particles 
have collided thousands of times. Thus, the network must learn a 
coarse-grained version of the dynamics. Recently, graph networks 
were also applied to constraint satisfaction on graphs24–27, a class of 
problems that share local interactions and frustration with glasses 
and, potentially, more phenomenology28. Here we take inspiration 
from these approaches and show that they are extensible to continu-
ous degrees of freedom in finite dimension, and can predict finite-
temperature evolution rather than minimal energy. We show that 
graph networks are a powerful tool for extracting predictive infor-
mation solely from the static structure of a glassy system.

Training procedure
We simulate the dynamics of a binary 80:20 Kob–Andersen-type 
Lennard–Jones mixture of N = 4,096 particles in a three-dimen-
sional box with periodic boundary conditions29. We follow the 
procedure described in the  Methods to generate equilibrated par-
ticle configurations at 13 state points covering more than three 
decades of relaxation time. Figure 1 shows the corresponding 
ensemble mean displacement ΔrðtÞ ¼ 1
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, where 〈..〉 denotes the 
thermodynamic average, t denotes the time, j iterates over the 
NA = 3,277 particles of type A and q corresponds to the first diffrac-
tion peak in the static structure factor. Throughout the text, we use 
dimensionless units based on the Lennard–Jones potential.

We train our architecture on four distinct state points that cover 
a wide range of temperatures, pressures, densities and relaxation 
times, as shown in Fig. 1. For each of these points, we generate 400 
independent configurations to serve as training examples for our 
networks (we checked that our results would not improve with more 
training examples, see Extended Data Fig. 1). Those examples are 
augmented by randomly applying one of their 24 cubic symmetries. 
We then evaluate them on an independent test set of another 400 
independent configurations. From each of these configurations, we 
run 30 separate simulations with different initial velocities, sampled 
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from these approaches and show that they are extensible to continu-
ous degrees of freedom in finite dimension, and can predict finite-
temperature evolution rather than minimal energy. We show that 
graph networks are a powerful tool for extracting predictive infor-
mation solely from the static structure of a glassy system.
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tion peak in the static structure factor. Throughout the text, we use 
dimensionless units based on the Lennard–Jones potential.

We train our architecture on four distinct state points that cover 
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times, as shown in Fig. 1. For each of these points, we generate 400 
independent configurations to serve as training examples for our 
networks (we checked that our results would not improve with more 
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configurations, that is, the eigenvectors associated with the smallest 
eigenvalues of the dynamical matrix of the system35.

With only input types and relative positions, and without any 
handcrafted features, the graph network outperforms all the other 
methods at all temperatures and across all timescales (from the end 
of the ballistic regime all the way to the diffusive regime) (Fig. 3). 
We note that at very short timescales, between the end of the ballistic 
regime and the onset of the glassy plateau, our method achieves the 
best possible performance, indicating that the graph network can 
fully compute early caging behaviour. In contrast, past the end of 
the glassy plateau, the performance of a three-dimensional convolu-
tional network approaches that of the graph network, in agreement 
with a picture where the diffusive dynamics on those timescales 
incorporate more elements from the density field and depend less 
on shorter length scales. These interpretations are in agreement with 
an analysis of the features used by the network, which we present 
in our ‘Analysis of the networks prediction’ section. Between these 
two extreme regimes lie the timescale where Sðq; tÞ ’ 0:7

I
, corre-

sponding to the appearance of irreversible motion. This prediction 
appears to be the most difficult for the graph network while being 
the best timescale for the physics-inspired soft modes baseline (note 
that the latter does not capture the thermal oscillation within a cage 
on very short timescales).

We also note that the performance of the graph network 
increases for lower temperatures, possibly exploiting the reduced 
thermal noise in the ground-truth labels (Fig. 3b and Extended Data  
Fig. 3). Beyond obtaining a better overall correlation, the graph net-
work also outperforms all of the other methods when classifying 
particles with extreme propensities, the spatial correlation of pro-
pensity and the location of the soft spots where the most mobile  

particles reside (Fig. 3e, Extended Data Figs. 4–6 and Supplementary 
Information for details).

The performance of the graph network monotonically increases 
when augmenting the number of edges in the graph, and also when 
increasing the number of recurrent steps (Extended Data Fig. 2). 
This indicates the network’s capacity to compute and propagate cor-
relations in the local inputs, discussed further below. This capacity 
is also apparent when measuring the four-point susceptibility χ4(t) 
of the propensity. The latter, defined as30,36
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with

qai ¼ 1 if ΔriðtÞ>a; else qai ¼ 0

measures the structural contribution to the dynamic fluctuations of 
the system (we use a = 0.438, the median displacement of the system 
for T = 0.44 and t = τg). When varying t, while both the SVM and 
the graph network produce a curve with the right shape, the graph 
network produces notably larger values for χ4 (Fig. 3c).

Temperature generalization
To probe the generalization capabilities of our network, we focus 
on the characteristic time τg defined above. For each of the four 
state points (indicated by asterisks in Fig. 1), we train a graph 
network to predict the propensity at τg. We investigate the per-
formance of these networks on 13 uniformly spaced state points 
between the two extreme temperatures in our study (T = 0.56 
and T = 0.44). We emphasize that neither the temperature nor 
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Fig. 2 | Model architecture. a, From the three-dimensional inputs, nodes at a distance of less than 2 are connected by two directed edges to form a graph. 
After processing, the network predicts propensities for each particle of type A. b, The graph network's core first updates edges based on themselves and 
adjacent nodes, and then nodes based on themselves and incoming edges. c, The graph network consists of an encoder (ENC), nrec applications of the core 
(G), followed by a decoder (DEC). Each application of the core increases the shell of particles contributing to a given particle's prediction, here shown in 
colour for the central particle (dark blue). d, A two-dimensional illustration48 of node activities from the encoder up to the final update. The colour codes 
the target propensities of the corresponding particles, with separate colour scales for particles of type A (colour bar on right) and type B (greyscale on 
left). The code starts at two possible locations, corresponding to the two possible node inputs. This separation, related to the underlying particle types, 
remains present throughout the network. Early on in the computation, nodes referring to particles with similar propensity yield similar codes, both for 
particles of type A (colour) the network is trained on, as well as particles of type B (grey). The final layer yields linearly separable embeddings.
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any other thermodynamic quantity is provided to the network,  
and while the network does not directly predict the value of τg for 
the various state points, it can readily be obtained via standard 
analysis (Fig. 1c).

We find strong generalization in the glassy regime: models 
trained at a state point within the glassy phase (below T = 0.50) 
maintain their prediction quality at other state points within the 
glassy phase. In particular, the performance of a graph network 
trained at T = 0.47 steadily increases as the test temperature is low-
ered (Fig. 3d), and its performance at T = 0.44 is almost the same as 
the one of a network directly trained at this temperature.

Above the glassy phase (T ≥ 0.50), the prediction quality of mod-
els trained at low temperature deteriorates quickly. This is only the 
case, however, for the median of the ten identically trained models. 
As is typical for neural networks, individual models exhibit very dif-
ferent behaviours: some generalize at least partly to high tempera-
tures, while others perform consistently below a random baseline. 
A closer investigation reveals that models generalize better when 
they are robust to changes in the number of graph edges caused by 
the changing density. Correspondingly, linearly re-scaling the num-
ber of connections as a function of temperature can substantially 
improve the generalization performance (Supplementary Fig. 26).

Predicting propensity under shear stress
Understanding and predicting the mechanical properties of materi-
als such as glasses is another grand challenge of practical impor-
tance37. Defects and soft spots are known to be connected to 
plastic rearrangement locations9,38, and previous machine learning 
approaches (SVMs) have shown capacity to infer such predictors, 
again using handcrafted features39. Here we demonstrate graph 
networks’ ability to internalize and predict propensity during shear 
stress to uncover future soft spots.

With the same equilibrated configurations used to predict pro-
pensity, we perform athermal quasi-static (AQS)40 simulations 
(described in detail in the Methods) to explore how the configura-
tions rearrange when the periodic box is subject to a shear stress 
along one of its axes. At a given tilt, we train models to predict 
the displacement of each particle with respect to its neighbouring  
particles11 as the tilt is increased by 4%.

Figure 4a shows that the graph network again outperforms both 
the SVM and the physics-inspired baselines based on the potential 
energy of each particle and the soft modes of the system41 (except for 
tilts near the thermally equilibrated system, in the linear relaxation 
regime, where the soft modes baseline—also a linear approach—
performs as well as the graph network). The quality of the graph  
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Fig. 3 | Thermal experiments results. a,b, Pearson correlation coefficient of propensity predictions for a fixed state point with T!=!0.44 (a) and 
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physics (soft modes (SM), Debye–Waller (DW), potential energy (PE)) methods, as described in the main text. c, Four-point correlation function χ4(t) 
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