

Coatings research for current and future Gravitational Wave detectors

F. Puosi

INFN Pisa

A storm of waves

On 15th September 2015, LIGO interferometers directly sensed the distortions in spacetime caused by passing GWs generated by two colliding black holes nearly 1.3 billion light years away.

O1 & O2/2015-2017 events

Phys. Rev. Lett. 116 061102 (2016)

O3/2019 alerts

The right instrument: GW interferometer

<image>

A small displacement... really small

Equivalent to measure a displacement of the size of one atom compared to the Earth – Sun distance!

Need to be sure that nothing else is moving the mirrors by this tiny amount: ground vibrations, for example, are billions of times too big!

The Coating Thermal Noise issue

VIRGO sensitivity (from the AdV+ roadmap)

Coating Thermal Noise (CTN) limits the detection band in the "bucket" (middle frequencies) which is the most sensitive region of the GW detectors.

Oversimple picture: KT of energy per mechanical mode, viscous damping moves front of the mirror with respect the center of mass

CTN power spectrum:

State of the art

10 mm of coating produces more thermal noise than 10 cm of substrate.

How can we do better?

Developing new coating materials for AdV+

- Factor 3 reduction of coating losses is targeted
- Same absorption and scattering

A recipe

- A material
- A deposition method
- A post-deposition treatment

The different activities

Synthesis

- Coating deposition
- Heat treatments

Macroscopic characterization

- Q measurements
- Absorption measurements
- Dielectric response
- Elastic constants
- Density

Modeling

- Structure
- TLS relaxations

Microscopic characterization

- TEM, SEM
- Raman, Brillouin
- XRD, XPS, XAS
- AFM

The Virgo Coatings R&D collaboration

Molecular Dynamics, a theoretical guidance

Simulations and **modeling** are standard tools for studying glasses and can be of help in the material selection:

- computation of losses (quality factor)
- microscopic characterization of loss mechanisms
- modeling of deposition methods

. . .

- estimate of crystallization and glass transition temperature

Microscopic picture of dissipation in glasses

At low frequencies (kHz range), dissipation dominated by anharmonic effects: Interactions of mechanical waves with thermally-activated relaxations (TAR)

Two-Level System (TLS) model: dissipation dues to atomic motion during transitions from one well to another, which are possible via coupling between external strain and thermal motion.

Only transitions with a relaxation time of the same order of the period of the strain wave propagating in the material produce mechanical losses

A new modeling approach

Mechanical losses in simulated amorphous Ta₂O₅

Glasses by cooling the liquid

Slowing down the cooling rate to replicate experimental annealing

Puosi, Fidecaro, Capaccioli, Pisignano and Leporini Phys. Rev. Res. **1** 033121 (2019)

We extrapolate from GHz to the acoustic frequencies

(range of interest for applications in GW detectors)

Comparing with experimental data

14

d1: M. Granata et al., in preparationd2: M. Granata et al., PRD 93, 012007 (2016)d3: R. Robie, Ph.D. thesis, Univ. of Glasgow (2018).

d4: M. Granata et al., PRD 93, 012007 (2016).
d5 I.W. Martin et al. Class. Quantum Grav. 27 225020 (2010).
d6: G. Vajente et al. Class. Quantum Grav. 35 075001 (2018).
d7: M. Principe et al., PRD 91, 022005 (2015).

A microscopic perspective on dissipation

Full length article

Non-local cooperative atomic motions that govern dissipation in amorphous tantala unveiled by dynamical mechanical spectroscopy

F. Puosi^{a,b,*}, F. Fidecaro^{a,b}, S. Capaccioli^{a,b}, D. Pisignano^{a,b}, D. Leporini^{a,b}

Color code: magnitude of non-affine displacement

Slowly quenched glass T=300 K f=10⁹ Hz

A microscopic perspective on dissipation

Dissipation as due to irreversible events leading to change of basin in the PEL

u_p: atom displacement over one strain cycle

Excess of high mobility oxygen atoms at 20 K which correlates with the cryogenic peak in mechanical losses

edge sharing

 $T(\mathbf{K})$

200

100

С

0.8

0.6

0

300

face sharing

200

 $T(\mathbf{K})$

300

100

(b

0.55

0.5

0.45

 $\mathbf{0}$

300

16

Next steps: Machine I

Unveiling the predictive power of static structure in glassy systems

V. Bapst[®]^{1,3}[∞], T. Keck^{1,3}, A. Grabska-Barwińska¹, C. Donner¹, E. D. Cubuk², S. S. Schoenholz², A. Obika¹, A. W. R. Nelson¹, T. Back¹, D. Hassabis¹ and P. Kohli¹

S = 0.115 1.20 1.00 Propensity 10 \geq bh network Three-dimensional input 0.60 b 0 ENC 0 10 X Comparison between predicted and true mobility DEC Edge update Node update

NATURE PHYSICS | VOL 16 | APRIL 2020 | 448-454 |

Where we are:

- Setting up a collaboration with DeepMind (Google)
- Preliminary stage: approach design and coding