

Astroparticle Physics & Cosmology: Overview

Luca Visinelli INFN, Laboratori Nazionali di Frascati

MEMBERS (in speaking order today):

Luca Visinelli (Frascati)

Michael Leyton (Napoli)

Mattia di Mauro (Torino)

Rubén López-Coto (Padova)

Francesco Puosi (Pisa)

Guillerm Dòmenech (Padova)

Constantinos Constantinou (Trento)

Evidences for dark matter

Rotational velocity curve of M33

According to Newton's Law:
$$v = \sqrt{\frac{G_N M_{\rm encl}(r)}{r}}$$

Gravitational lensing by galaxy clusters

Additional evidence for the existence of dark matter comes from lensing

Cosmology

Evidences for dark energy

SNIa distance and luminosity

Luminosity distance of a SN
$$D_L \equiv \sqrt{\frac{\mathcal{L}}{4\pi\mathcal{F}}}$$
 \mathcal{L} Intrinsinc luminosity \mathcal{L} Cobserved flux

Fit observations at redshift z against the expression

$$D_L(z) = (1+z)\frac{c}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_m (1+z')^3 + \Omega_k (1+z')^2 + \Omega_\Lambda}}$$

speed of light

 H_0

Hubble constant

 $\Omega_m, \Omega_k, \Omega_{\Lambda}$

fractional energy density in matter, curvature, cosmological constant

Saul Perlmutter

Adam Reiss

FIG. 4. Marginalised constraints on Ω_m and Ω_{Λ} obtained from BOSS voids, Pantheon SNe, BAO and *Planck* CMB, assuming w = -1. The line indicates spatially flat models. BAO+voids give $\Omega_{\Lambda} = 0.600 \pm 0.058$, a > 10σ detection of acceleration.

See the very recent review on 2103.01183

In the Realm of the Hubble tension – a Review of Solutions †

Eleonora Di Valentino^{1*}, Olga Mena², Supriya Pan³, Luca Visinelli⁴, Weiqiang Yang⁵, Alessandro Melchiorri⁶, David F. Mota⁷, Adam G. Riess^{8,9}, Joseph Silk^{8,10,11}

The ΛCDM (Lambda-Cold Dark Matter) model is a concordance model that attempts to capture the key observations about both "early" and "late" Universe.

Key ingredients:

- Standard Model (SM) content: "baryons", radiation, neutrinos;
- (Cold) dark matter;
- Dark energy in the form of a cosmological constant;
- Zero curvature, Friedmann-Robertson-Walker metric

One more ingredient: inflation

Inflation is a very early epoch in which the expansion of the Universe accelerated

Inflation solves several problems of the standard Big-Bang picture:

• Flatness:

$$|1 - \Omega_{\rm tot}| \lesssim 10^{-3}~{
m today~means}~|1 - \Omega_{\rm tot}| \lesssim 10^{-5}~{
m at~CMB}$$

• Horizon:

CMB patches are causally disconnected, yet temperature fluctuations only arise at the level of $\Delta T/T_0 \sim 10^{-5}$

• Absence of topological defects:

See talk by Guillem Domènech

The nature of dark matter

Is dark matter a particle?

Macroscopic object es. (Primordial) black hole

Did LIGO detect dark matter?

Simeon Bird,* Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess¹

see e.g. 1603.00464

See talks by Guillem Domènech and Francesco Puosi on BHs

See also the talk by Constantinos Constantinou on dense environments

New particle not in the SM

- From supersymmetry (es.WIMP)
- From fixing QCD issues (es. axion)
- From a dark sector (mediated by Higgs or dark photon)
- Feebly-interacting light boson
-

New massive particle (WIMP)

See talk by Michael Leyton for direct detection searches

See talks by Mattia di Mauro and Rubén López-Coto for indirect detection searches

New massive particle (WIMP)

Black holes can possess a halo of gravitationally bound WIMPs around

Figure from Kavanagh 1805.09034

Looking for WIMP annihilation signatures from these structures

See e.g. Carr, Kühnel, **LV** 2008.08077, 2011.01930

The axion is a light ($m_a \lesssim 10^{-2}\,\mathrm{eV}$) pseudoscalar predicted within QCD

Physics Reports

Volume 870, 25 July 2020, Pages 1-117

The landscape of QCD axion models

Luca Di Luzio ^a ☒, Maurizio Giannotti ^b ☒, Enrico Nardi ^c Ҳ ☒, Luca Visinelli ^d ☒

Show more \vee

https://doi.org/10.1016/j.physrep.2020.06.002

Get rights and content

Axions form distinct substructures: axion miniclusters and axion stars

Axion minicluster: clump of virialized, self-gravitating axions Axion star: Condensate of axions kept in equilibrium by quantum pressure

Both objects form in the early Universe and can suffer tidal disruption

Edwards, Kavanagh, LV, Weniger, 2011.05377, 2011.05378

Future work:

Improve current simulations;

Interplay of axion miniclusters and axion stars;

Detection strategies away from direct detection for the QCD axion;

Extend to other light bosons