Scattering Amplitude **Role of Intersection Theory**

Manoj Kumar Mandal **INFN & University of Padova**

Fellini General Meeting 4th March, 2021

Università **DEGLI STUDI** DI PADOVA

Dipartimento di Fisica e Astronomia Galileo Galilei

Why Scattering Amplitudes ?

Collider Phenomenology

Gravitational Waves

Manoj Kumar Mandal, INFN Padova, Italy

Geometry and QFT

Scattering Amplitude and Cross-Section

Manoj Kumar Mandal, INFN Padova, Italy

$$\sigma^0 \approx \int |\mathcal{M}_N^{(0)}|^2 d\Phi_N$$

 $\sigma_N^{(1)} \approx \int 2\text{Re}\left(\mathcal{M}_N^{(0)*}\mathcal{M}_N^{(1)}\right) d\Phi_N$ $+ \int |\mathcal{M}_{N+1}^{(0)}|^2 d\Phi_{N+1}$ $[R_0] \, d\phi_3$ NLO $[RR_0]\,d\phi_4$ $\sigma_N^{(2)} \approx \int 2\text{Re}\left(\mathcal{M}_N^{(0)*}\mathcal{M}_N^{(2)}\right) d\Phi_N$ $+ \int 2\operatorname{Re}\left(\mathcal{M}_{N+1}^{(0)*}\mathcal{M}_{N+1}^{(1)}\right) d\Phi_{N+1}$ 00000000 00000000 $|\mathcal{M}_{N+2}^{(0)}|^2 d\Phi_{N+2}$

Feynman Integral

Precision computation of the cross-section in perturbation theory requires the computation of multi-leg / multi loop Feynman Integrals.

Integration-By-Parts (IBP) identity

$$\int_{\alpha=1}^{l} \prod d^{d}k_{\alpha} \frac{\partial}{\partial k_{j,\mu}} \left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) = \int_{\alpha=1}^{l} \prod d^{d}k_{\alpha} \left[\frac{\partial v^{\mu}}{\partial k_{j,\mu}} \left(\frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) - \sum_{j=1}^{N} \frac{a_{j}}{D_{j}} \frac{\partial D_{j}}{\partial k_{j,\mu}} \left(\frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \right) \right]$$

$$C_1 I(a_1, \cdots a_N - 1) + \cdots + C_r I(a_1 + 1, \cdots a_N) = 0$$

** Gives relations between different scalar integrals with different exponents ** l(1+E) number of equations

- Solve the system symbolically : Recursion relations
- Solve for specific integer value of the exponents : Laporta Algorithm

Chetyrkin, Tkachov

Loop and external momenta

LiteRed

orta Algorithm Fire, Reduze, Kira,...

- * Kira A Feynman Integral Reduction Program Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

* Integration-by-parts reductions of Feynman integrals using Singular and **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

- * Kira A Feynman Integral Reduction Program Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

***** Integration-by-parts reductions of Feynman integrals using Singular and **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

- **Kira A Feynman Integral Reduction Program** Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

***** Integration-by-parts reductions of Feynman integrals using Singular and **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

- **Kira A Feynman Integral Reduction Program** Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

***** Integration-by-parts reductions of Feynman integrals using Singular and **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

Goal : To define an Vector space with inner product for the FIs

What is the Vector Space *V*?

What is the dual vector space V^*

What is the scalar product $V \times V^* \to \mathbb{C}$

- **Kira A Feynman Integral Reduction Program** Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

Integration-by-parts reductions of Feynman integrals using Singular and * **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

Goal : To define an Vector space with inner product for the FIs

What is the Vector Space *V*?

What is the dual vector space V^*

What is the scalar product $V \times V^* \to \mathbb{C}$

Intersection Theory

- **Kira A Feynman Integral Reduction Program** Maierhoefer, Usovitsch, Uwer (2018)
- **FIRE6:** Feynman Integral REduction with Modular Arithmetic Smirnov, A. V. and Chuharev (2019)
- ***** Two-loop five-point massless QCD amplitudes within the integration-byparts approach

Integration-by-parts reductions of Feynman integrals using Singular and * **GPI-Space**

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

***** FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs

```
Peraro (2019)
```

Different New Ideas ?

Goal : To define an Vector space with inner product for the FIs

What is the Vector Space *V*?

What is the dual vector space V^*

What is the scalar product $V \times V^* \to \mathbb{C}$

Intersection Theory

Aomoto, Gelfand, Kita, Cho, Matsumoto, Mimachi, Mizera, Yoshida

Twisted Cycle

 $u(\mathbf{z})$ is a multi-valued function

 $u(\mathbf{z})$ vanishes on the boundaries of \mathcal{C} , $u(\partial \mathcal{C}) = 0$

Intersection Theory

Twisted Co-cycle

 $\langle \varphi | \mathcal{C}]$

Pairing

Basics of Intersection Theory

$$0 = \int_{\mathcal{C}} d\left(u\,\xi\right) = \int_{\mathcal{C}} \left(du \wedge \xi + u\,d\xi\right) = \int_{\mathcal{C}} u\left(\frac{du}{u} \wedge + d\right)\xi \equiv \int_{\mathcal{C}} u\,\nabla_{\omega}\xi$$

Equivalence Class

$$\omega \langle \varphi | : \varphi \sim \varphi + \nabla_{\omega} \xi \qquad \qquad \int_{\mathcal{C}} u \varphi = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{\mathcal{C} } u \langle \varphi \rangle = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{\mathcal{C}} u \langle \varphi \rangle = \int_{$$

Vector Space of n-forms

$$H_{\omega}^{n} \equiv \{n \text{-forms } \varphi_{n} \mid \nabla_{\omega} \varphi_{n} = 0\} / \{\nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} = 0\} / \{\nabla_{\omega} \varphi_{n-1} \mid \nabla_{\omega} \varphi_{n-1} \mid$$

Dual space

$$H^n_{-\omega} = d - \omega \wedge$$

$$\chi(X) = \sum_{k=0}^{2n} (-1)^k \dim H^k_{\omega}. \qquad H^{k \neq n}_{\omega} \text{ vanish}. \qquad \text{Aomoto}$$
$$\nu = (-1)^n \chi(X)$$
$$= (-1)^n (n+1 - \chi(\mathcal{P}_{\omega}))$$
$$= \{\text{number of solutions of } \omega = 0\}$$

$$Integral \qquad Intersection \\ \langle \varphi_L | \mathcal{C}_L] = \int_{\mathcal{C}_L} u(\mathbf{z}) \varphi_L(\mathbf{z}) \qquad \langle \varphi_L | \varphi_L | \varphi_L \rangle$$

Master Decomposition Formula

$$\langle \varphi | = \sum_{i,j=1}^{\nu} \langle \varphi | h_j \rangle \left(\mathbf{C}^{-1} \right)_{ji} \langle e_i |$$

Univariate Intersection Number

$$\langle \varphi_L | \varphi_R \rangle_\omega = \sum_{p \in \mathcal{P}} \operatorname{Res}_{z=p} \left(\psi_p \, \varphi_R \right)$$

Matsumoto, Mizera

$$\nabla_{\omega_p}\psi_p = \varphi_{L,p}$$

First Order Differential Equation

Decomposition of Feynman Integral

Integrals

$$I = \int_{\mathcal{C}} u \varphi = \langle \varphi | \mathcal{C}]$$

Number of MIs

$$\omega \equiv d\log u(\mathbf{z}) = \sum_{i=1}^{n} \hat{\omega}_i \, dz_i$$

 $\nu =$ Number of solutions of the system of equations

$$\hat{\omega}_i \equiv \partial_{z_i} \log u(\mathbf{z}) = 0, \qquad i = 1, \dots, n$$

$$I = \sum_{i=1}^{\nu} c_i J_i \qquad \qquad J_i = \langle e_i | \mathcal{C}]$$

Choice of Bases

$$e_i(\mathbf{z})$$
 $h_i(\mathbf{z})$

$$\mathbf{C}_{ij} = \langle e_i | h_j \rangle$$
$$\langle \varphi | = \sum_{i=1}^{\nu} \langle \varphi | h_j \rangle \left(\mathbf{C}^{-1} \right)_{ji} \langle e_i |$$

i,j=1

Metric Matrix

Master Decomposition Formula

Manoj Kumar Mandal, INFN Padova, Italy

Frellesvig, Gasparotto, MKM, Mastrolia, Mattiazzi, Mizera (2019)

Computation of Multivariate Intersection Number

Recursive Formula :

$$\mathbf{n} \langle \varphi_L^{(\mathbf{n})} | \varphi_R^{(\mathbf{n})} \rangle = -\sum_{p \in \mathcal{P}_n} \operatorname{Res}_{z_n = p} \left(\mathbf{n} - \mathbf{1} \langle \varphi_L^{(\mathbf{n})} | h_i^{(\mathbf{n} - \mathbf{1})} \rangle \psi_i^{(\mathbf{n} - \mathbf{1})} \right)$$

Intersection Theory: Example

$$u(\mathbf{z}) = \left((st - sz_4 - tz_3)^2 - 2tz_1 (s(t + 2z_3 - z_2 - z_4) + tz_3) + s^2 z_2^2 + t^2 z_1^2 - 2sz_2 (t(s - z_3) + z_4 (s + 2t)))^{\frac{d-5}{2}} \right)$$

3 MIs
$$\begin{cases} N_{\{1,2,3,4\}} = 1 \\ N_{\{1,3\}} = 1 \\ N_{\{2,3\}} = 1 \end{cases} \quad J_1 = \square, \quad J_2 = X, \quad J_3 = X \end{cases}$$

Manoj Kumar Mandal, INFN Padova, Italy

One Loop Box : DE

-							
	I	ntegral famil	Denominators				
				$z_1 = k^2 - m_1^2$			
	z_2 z_4			$z_2 = (k+p_1)^2 - m_2^2$			
	đ		$z_3 = (k + p_1 + p_2)^2 - r$ $z_4 = (k + p_1 + p_2 + p_2)^2 - r$				
$s = (p_1 + p_2)^2, t = (p_2 + p_3)^2$							
	au	ν		e			
		$\nu_{\{3\}} = 2$		$e^{(3)} = \left\{1, \frac{1}{z_3}\right\}$			
	$z_4 = 0$	$\nu_{\{32\}} = 3$		$e^{(32)} = \left\{ \frac{1}{z_2}, \frac{1}{z_3}, \frac{1}{z_2 z_3} \right\}$			
		$ \nu_{\{321\}} = 6 $	$e^{(321)} =$	$= \left\{1, \frac{1}{z_2}, \frac{1}{z_1 z_2}, \frac{1}{z_1 z_3}, \frac{1}{z_2 z_3}, \frac{1}{z_1 z_2 z_3}\right\}$			
		$ \nu_{\{4\}} = 2 $		$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$			
	$z_3 = 0$	$\nu_{\{41\}} = 3$		$e^{(41)} = \left\{\frac{1}{z_1}, \frac{1}{z_4}, \frac{1}{z_1 z_4}\right\}$			
		$\nu_{\{412\}} = 6$	$e^{(412)} =$	$=\left\{1, \frac{1}{z_1}, \frac{1}{z_1 z_2}, \frac{1}{z_1 z_4}, \frac{1}{z_2 z_4}, \frac{1}{z_1 z_2 z_4}\right\}$			
		$ \nu_{\{4\}} = 2 $		$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$			
	$z_2 = 0$	$ u_{\{43\}} = 3 $		$e^{(43)} = \left\{\frac{1}{z_3}, \frac{1}{z_4}, \frac{1}{z_3 z_4}\right\}$			
		$\nu_{\{431\}} = 6$	$e^{(431)} =$	$=\left\{1, \frac{1}{z_4}, \frac{1}{z_1 z_3}, \frac{1}{z_1 z_4}, \frac{1}{z_3 z_4}, \frac{1}{z_1 z_3 z_4}\right\}$			
	$z_1 = 0$	$ \nu_{\{4\}} = 2 $		$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$			
		$\nu_{\{43\}} = 3$		$e^{(43)} = \left\{\frac{1}{z_3}, \frac{1}{z_4}, \frac{1}{z_3 z_4}\right\}$			
		$ \nu_{\{432\}} = 6 $	$e^{(432)} =$	$=\left\{1, \frac{1}{z_3}, \frac{1}{z_2 z_3}, \frac{1}{z_2 z_4}, \frac{1}{z_3 z_4}, \frac{1}{z_2 z_3 z_4}\right\}$			
ADDAD	The state of the s						
	$= c_1 \qquad + c_2 \qquad + c_3 \qquad + c_4 \qquad + c_5$						
$d^{d^{\mu}}$ d^{d							
$+ c_6 + c_7 + c_8 + c_9 $							
$+c_{10}$ z_{3} $+c_{11}$ z_{4} .							

PREPARED FOR SUBMISSION TO JHEP

Decomposition of Feynman Integrals by Multivariate Intersection Numbers

Hjalte Frellesvig,^{a,b} Federico Gasparotto,^{a,b} Stefano Laporta,^{a,b} Manoj K. Mandal,^{b,a} Pierpaolo Mastrolia,^{*a,b*} Luca Mattiazzi,^{*b,a*} Sebastian Mizera^{*c*}

^aDipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, Italy ^bINFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy

E-mail: {hjalte.frellesvig, federico.gasparotto, stefano.laporta, manojkumar.mandal, pierpaolo.mastrolia, luca.mattiazzi}@pd.infn.it, smizera@ias.edu

ABSTRACT: We present a detailed description of the recent idea for a direct decomposition of Feynman integrals onto a basis of master integrals by projections, as well as a direct derivation of the differential equations satisfied by the master integrals, employing multivariate intersection numbers. We discuss a recursive algorithm for the computation of multivariate intersection numbers, and provide three different approaches for a direct decomposition of Feynman integrals, which we dub the straight decomposition, the bottom-up decomposition, and the top-down decomposition. These algorithms exploit the unitarity structure of Feynman integrals by computing intersection numbers supported on cuts, in various orders, thus showing the synthesis of the intersection-theory concepts with unitarity-based methods and integrand decomposition. We perform explicit computations to exemplify all of these approaches applied to Feynman integrals, paving a way towards potential applications to generic multi-loop integrals.

Work in progress

^cInstitute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

Markov Markov M

- The algebra of Feynman Integrals is controlled by intersection numbers Z
- Intersection Numbers : Scalar Product/Projection between Feynman Integrals V
- Useful for both Physics and Mathematics $\mathbf{\overline{\mathbf{V}}}$

Novel decomposition method $\mathbf{\overline{\mathbf{M}}}$

- Direct decomposition in a Integral Basis $\mathbf{\overline{\mathbf{V}}}$
- **Mo** Intermediate relation required

Conclusion

2-Loop Electron-Muon Amplitude

◆ Computation of 2-loop virtual amplitude for electron-muon scattering, relevant for the MUonE experiment

Bonciani, Di-Vita, Passera, Primo, MKM, Mastrolia, Mattiazzi, Ronca, Schubert, Torres Bobadilla, Tramontano

- ◆ Successfully organized the international conference on the EFT methods
- ◆ On the Editorial board of the Proceedings of the MathemAmplitudes Conference, 2019

Manoj Kumar Mandal, INFN Padova, Italy

Other Activities

◆ Presented a talk on the Status of the analytical and numerical evaluation of multi-loop integrals in the CEPC meeting, 2020

Dipartimento di Fisica e Astronomia Galileo Galilei Size2-2022 A N N 1 Università degli Studi di Padova MathemAmplitudes 2021 **EFTMethodsBS 2020** EFT Methods from Bound States to Binary System **October**, 2021 Padova / Zoom October 28 - 30, 2020 UNIVERSITÀ INFN DEGLI STUDI DI PADOVA stituto Nazionale di Fisica N Organizers H. Frellesvig S. Laporta **SPEAKERS** M. K. Mandal P. Mastrolia VI BERN [UCLA Peter MARQUARD IDE S. Mizera adyslav SHTABOVENKO [ĸ iccardo STURANI [IIP-UFRN, Nata Antonio VAIRO [тим, Mun esh MANOHAR ru https://indico.dfa.unipd.it/e/eftmethodsBS20 nizers:: S. Foffa, M. K. Mandal, P. Mastrolia, C. Sturm, W.J. Iorres Bobadil taff:: F. Gasparotto, L. Mattiazzi, P. Zenere **Solution** particleface

Thank you

Manoj Kumar Mandal, INFN Padova, Italy

Intersection Theory: Example

$$u(\mathbf{z}) = \left((st - sz_4 - tz_3)^2 - 2tz_1 (s(t + 2z_3 - z_2 - z_4) + tz_3) + s^2 z_2^2 + t^2 z_1^2 - 2sz_2 (t(s - z_3) + z_4 (s + 2t)))^{\frac{d-5}{2}} \right)$$

Baikov Polynomial

The sectors containing the MIs are

3 MIs
$$\begin{cases} N_{\{1,2,3,4\}} = 1 \\ N_{\{1,3\}} = 1 \\ N_{\{2,3\}} = 1 \end{cases} \quad J_1 = \square, \quad J_2 = X, \quad J_3 = X \end{cases}$$

Integral Decomposition

Manoj Kumar Mandal, INFN Padova, Italy

$$\operatorname{Cut}_{\{\mathbf{2},\mathbf{4}\}}$$

$$\partial_s = K \int_{\mathcal{C}} u_{2,4} \varphi_{2,4} \qquad \varphi_{2,4} = \hat{\varphi}_{2,4} \, dz_3 \wedge dz_1$$

$$u_{2,4} = z_1^{\rho_1} z_3^{\rho_3} u(z_1, 0, z_3, 0)$$
$$\hat{\varphi}_{2,4} = \frac{f}{z_1 z_3} \quad f = \frac{1}{Ku} \frac{\partial(Ku)}{\partial s}$$

Differential Equation

$$\partial_{s} = a_{1} + a_{3} + a_{3$$

op Box : DE

-							
	Ι	ntegral famil	Denominators				
	1	z_1 z_4 z_4	$ \begin{aligned} z_1 &= k^2 - m_1^2 \\ z_2 &= (k + p_1)^2 - m_2^2 \\ z_3 &= (k + p_1 + p_2)^2 - m_3^2 \\ z_4 &= (k + p_1 + p_2 + p_3)^2 - n_3^2 \end{aligned} $				
$s = (p_1 + p_2)^2$, $t = (p_2 + p_3)^2$							
	au	ν		e			
	$z_4 = 0$	$\nu_{\{3\}} = 2 \\ \nu_{\{32\}} = 3$		$e^{(3)} = \left\{1, \frac{1}{z_3}\right\}$ $e^{(32)} = \left\{\frac{1}{z_2}, \frac{1}{z_3}, \frac{1}{z_2 z_3}\right\}$			
		$\nu_{\{321\}} = 6$	$e^{(321)} =$	$=\left\{1, rac{1}{z_2}, rac{1}{z_1 z_2}, rac{1}{z_1 z_3}, rac{1}{z_2 z_3}, rac{1}{z_1 z_2 z_3} ight\}$			
	$z_3 = 0$	$ \nu_{\{4\}} = 2 $ $ \nu_{\{41\}} = 3 $		$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$ $e^{(41)} = \left\{\frac{1}{z_1}, \frac{1}{z_4}, \frac{1}{z_1 z_4}\right\}$			
		$\nu_{\{412\}} = 6$	$e^{(412)} =$	$\left\{1, \frac{1}{z_1}, \frac{1}{z_1 z_2}, \frac{1}{z_1 z_4}, \frac{1}{z_2 z_4}, \frac{1}{z_1 z_2 z_4}\right\}$			
	$z_2 = 0$	$ \nu_{\{4\}} = 2 $ $ \nu_{\{43\}} = 3 $		$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$ $e^{(43)} = \left\{\frac{1}{z_3}, \frac{1}{z_4}, \frac{1}{z_3 z_4}\right\}$			
		$\nu_{\{431\}} = 6$	$e^{(431)} =$	$\left\{1, \frac{1}{2}, \frac{1}{$			
	$z_1 = 0$	$ \begin{array}{c} \nu_{\{4\}} = 2 \\ \nu_{\{43\}} = 3 \\ \nu_{\{432\}} = 6 \end{array} $	$e^{(432)} =$	$e^{(4)} = \left\{1, \frac{1}{z_4}\right\}$ $e^{(43)} = \left\{\frac{1}{z_3}, \frac{1}{z_4}, \frac{1}{z_3 z_4}\right\}$ $\left\{1, \frac{1}{z_3}, \frac{1}{z_2 z_3}, \frac{1}{z_2 z_4}, \frac{1}{z_3 z_4}, \frac{1}{z_2 z_3 z_4}\right\}$			
REPERT		$-c_{6}$	$+ c_{11}$	$c_{3} + c_{4} + c_{5}$ $c_{3} + c_{8} + c_{9} + c_{9}$			