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Why Scattering Amplitudes ?

» SCATTERING AMPLITUDES for precision physics  
60 orders of magnitudes in Energy scales:  
from quarks and gluons to black-hole binary systems

» one tool: Feynman diagrams  
crucial for Elementary Particles  
and Gravitational Waves Phenomenology:  
form hard scattering cross-sections to astrophysical coalescing systems

» Interdisciplinary competences required

» Impact  
Physics and Mathematics, but also Biology, 
Chemistry, Statistics and Economy

www.nature.com/scientificreports/
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analysis is not restricted to biomolecules, and can be applied to interactions within any polymer-like system of 
chains. Nonetheless, when discussing speci!c applications, we focus on biomolecules, which provide a huge set of 
examples and for which our methods can be particularly useful.


���������������������
Before introducing the genus trace, we recall what the genus is and how it can be used in the analysis of biopol-
ymers. Note that the genus of RNA structures was considered before, e.g. in1–8, or for proteins in9. However in 
those works the genus was computed only for the entire chain length, and taking into account only canonical 
Watson-Crick base pairs in the RNA case. Here we show that much more detailed information is revealed once 
genus is computed for various types of bonds in a given structure, e.g. also for non-canonical base pairs, including 
those involved in helix backbone packing interactions in RNA. Moreover, the genus trace that we introduce in 
what follows captures much more information than solely the genus of the whole chain.

What is genus and how to compute it? Consider a polymer-like chain consisting of a number of resi-
dues, with bonds connecting various pairs of these residues, as in the example in Fig. 1(a). #e structure of such a 
chain can be presented in the form of a chord diagram. A chord diagram consists of b horizontal intervals (called 
backbones) that represent one or more polymer-like chains, and n arcs (chords) representing bonds, which con-
nect pairs of residues, and are drawn as half-circles in the upper-half plane. In this work we consider con!gura-
tions with only one backbone, =b 1. A chord diagram corresponding to the structure in Fig. 1(a) is shown in 
Fig. 1(b). Such diagrams are commonly used to present the structure of RNA chains3,4. A stack of parallel chords 
contributes in the same way as a single chord to the genus, so each set of parallel chords can be replaced by one 
chord, as in Fig. 1(c). Furthermore, to compute the genus it is of advantage to replace all backbones and chords by 
ribbons of !nite width, also as in Fig. 1(c). In this way we obtain a two-dimensional surface with r boundaries, 
which – a$er shrinking a backbone to a small circle – can be drawn in a smooth way on an auxiliary surface of 
genus g (i.e. having g “holes”), as in Fig. 1(d). #e genus of a chord diagram is de!ned as the genus of this auxiliary 
surface. #is genus can be determined from the Euler formula

− = − − .b n g r2 2 (1)

For example, in Fig. 1(c) there is =b 1 backbone, =n 2 chords, and =r 1 boundary (drawn in red). #erefore 
it follows from the Euler formula that the genus =g 1, so that the auxiliary surface is a torus, see Fig. 1(d).

Note that if no chords intersect in a given chord diagram then =g 0; in this case the chord diagram is called 
planar. In particular, a large complicated RNA with a secondary structure having all nested basepairs has genus 

=g 0, so it is quite simple from the point of view of this paper. Furthermore, for a !xed number of chords and 
backbones the genus cannot exceed some maximal value. We also recall that chord diagrams are used by mathe-
maticians to characterize moduli spaces of Riemann surfaces, while physicists reinterpret them as a particular 
class of Feynman diagrams arising in certain quantum !eld theories or matrix models4,7. Certain properties of 
chord diagrams have been also discussed in10.

Types of bonds and bifurcations. To determine the genus, for example using the formula (1), one simply 
considers all bonds in a given chain. However in various contexts, in particular for biomolecules, one can distin-
guish between various types of bonds. In this work we propose to consider such a distinction; as we will see, this 
provides some new information about those di%erent types of bonds. For RNA, an important classi!cation of base 
pairs have been introduced by Leontis and Westhof11,12. #ey noticed that RNA bases can be regarded as triangles 
with three di%erent edges, referred to as: Hoogsteen edge (denoted HG or H), Watson-Crick edge (denoted WC 
or W), and Sugar or Shallow Groove edge (denoted S or SG), see Fig. 2(a). Base pairs are formed by any of these 

Figure 1. How to compute the genus. (a) A chain with several bonds (in blue and orange) connecting various 
pairs of residues (black dots). (b) Chord diagram representing the same structure. (c) Parallel chords replaced 
by a single chord, and then – together with the backbone – replaced by ribbons, whose single boundary is 
shown in red. (d) A$er shrinking the backbone to a small circle, the ribbon diagram can be smoothly drawn on 
a surface of a torus, whose genus is g = 1.
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Scattering Amplitude and Cross-Section
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Cross-Section at perturbative orders :
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as poles after the use of dimensional regularization.
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after the phase space integration.
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Feynman Integral

Precision computation of the cross-section in perturbation theory requires the computation 

of multi-leg / multi loop Feynman Integrals. 

Reduction of scalar integrals to Master integrals using IBP

Computation of the MIs

The Main Bottleneck
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Integration-By-Parts (IBP) identity

Loop and external  
momentaLoop momenta
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Gives relations between different scalar integrals with different exponents

Solve the system symbolically : Recursion relations
Solve for specific integer value of the exponents : Laporta Algorithm
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LiteRed

Fire, Reduze, Kira,..

Chetyrkin, Tkachov

Z l

↵=1

Y
ddk↵

@

@kj,µ

✓
vµ

Da1
1 · · ·DaN

N

◆
=

Z l

↵=1

Y
ddk↵

2

4 @vµ

@kj,µ

✓
1

Da1
1 · · ·DaN

N

◆
�

NX

j=1

aj
Dj

@Dj

@kj,µ

✓
vµ

Da1
1 · · ·DaN

N

◆3

5

<latexit sha1_base64="0K9Lu2POCFBFi/jW7CU4iyuKTZE="></latexit>



Manoj Kumar Mandal, INFN Padova, Italy 6

Different New Ideas ?

Kira - A Feynman Integral Reduction Program 
Maierhoefer, Usovitsch, Uwer (2018)

FiniteFlow: multivariate functional reconstruction using finite fields and 
dataflow graphs 
Peraro (2019)

 Two-loop five-point massless QCD amplitudes within the integration-by-
parts approach 
Chawdhry,Lim,Mitov (2018)

 Integration-by-parts reductions of Feynman integrals using Singular and 
GPI-Space 
Bendle, Boehm, Decker,Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

FIRE6: Feynman Integral REduction with Modular Arithmetic 
Smirnov, A. V. and Chuharev (2019)
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<latexit sha1_base64="KIPCwVXH6SwBBAlmxBp9E7hpmE4=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCWlEixIlViAqUj0ITUhclynteo4ke0gVVF2Fn6FhQGEWPkBNv4Gp80ALUeydXzOvbq+x48Zlcqyvo3Syura+kZ5s7K1vbO7Z+4fdGWUCEw6OGKR6PtIEkY56SiqGOnHgqDQZ6TnTy5zv/dAhKQRv1PTmLghGnEaUIyUljyzeg0voCOT0EupZnZ2nzo8ySDW7wze5Ldn1qy6NQNcJnZBaqBA2zO/nGGEk5BwhRmScmBbsXJTJBTFjGQVJ5EkRniCRmSgKUchkW462yWDx1oZwiAS+nAFZ+rvjhSFUk5DX1eGSI3lopeL/3mDRAXnbkp5nCjC8XxQkDCoIpgHA4dUEKzYVBOEBdV/hXiMBMJKx1fRIdiLKy+TbqNun9Ybt81aq1nEUQZHoApOgA3OQAtcgTboAAwewTN4BW/Gk/FivBsf89KSUfQcgj8wPn8AL/2Z3A==</latexit>

Goal : To define an Vector space with inner product for the FIs 

I · Jj
�
C�1

�
ji

<latexit sha1_base64="hAFGR7NHWwH5IyD6ATYE6SfwBTg=">AAACD3icbVC7SgNBFJ2Nrxhfq5Y2g0GJhWE3BrQMpFGrCOYB2RhmJ7PJmNkHM3eFsOwf2PgrNhaK2Nra+TdOHoUmHrhwOOde7r3HjQRXYFnfRmZpeWV1Lbue29jc2t4xd/caKowlZXUailC2XKKY4AGrAwfBWpFkxHcFa7rD6thvPjCpeBjcwihiHZ/0A+5xSkBLXfP4Cju0FwK+7ib3KXYE86BQvUtO7dSRvD+AE63ztGvmraI1AV4k9ozk0Qy1rvnl9EIa+ywAKohSbduKoJMQCZwKluacWLGI0CHps7amAfGZ6iSTf1J8pJUe9kKpKwA8UX9PJMRXauS7utMnMFDz3lj8z2vH4F10Eh5EMbCAThd5scAQ4nE4uMcloyBGmhAqub4V0wGRhIKOMKdDsOdfXiSNUtE+K5ZuyvlKeRZHFh2gQ1RANjpHFXSJaqiOKHpEz+gVvRlPxovxbnxMWzPGbGYf/YHx+QOwV5vK</latexit>

Ji · Jj = Cij 6= �ij
<latexit sha1_base64="OUg6eioufzFisRvunrSb5MQG7Uk=">AAACEnicbZA9SwNBEIb3/IzxK2ppsxgEbcKdBrQRBBtJFcF8QC4ce3uTuLq3d+7OCeHIb7Dxr9hYKGJrZee/cRNTaPSFhYd3ZpidN0ylMOi6n87M7Nz8wmJhqbi8srq2XtrYbJok0xwaPJGJbofMgBQKGihQQjvVwOJQQiu8ORvVW3egjUjUJQ5S6Masr0RPcIbWCkr7tUBQn0cJ0lqQXw/pCT0LcmHBV3BL/QgksrERlMpuxR2L/gVvAmUyUT0offhRwrMYFHLJjOl4bordnGkUXMKw6GcGUsZvWB86FhWLwXTz8UlDumudiPYSbZ9COnZ/TuQsNmYQh7YzZnhlpmsj879aJ8PecTcXKs0QFP9e1MskxYSO8qGR0MBRDiwwroX9K+VXTDOONsWiDcGbPvkvNA8q3mHl4KJaPq1O4iiQbbJD9ohHjsgpOSd10iCc3JNH8kxenAfnyXl13r5bZ5zJzBb5Jef9C+M9nPg=</latexit>

I · Ji
<latexit sha1_base64="MFkqm8HhPccS8un51aM9CG+qIvY=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSJ4Kru1oMeCF/VUwX5Au5RsNtuGZpM1yRbK0t/hxYMiXv0x3vw3pu0etPXBwOO9GWbmBQln2rjut7O2vrG5tV3YKe7u7R8clo6OW1qmitAmkVyqToA15UzQpmGG006iKI4DTtvB6Gbmt8dUaSbFo5kk1I/xQLCIEWys5N+hHgmlQff9jE37pbJbcedAq8TLSRlyNPqlr14oSRpTYQjHWnc9NzF+hpVhhNNpsZdqmmAywgPatVTgmGo/mx89RedWCVEklS1h0Fz9PZHhWOtJHNjOGJuhXvZm4n9eNzXRtZ8xkaSGCrJYFKUcGYlmCaCQKUoMn1iCiWL2VkSGWGFibE5FG4K3/PIqaVUr3mWl+lAr12t5HAU4hTO4AA+uoA630IAmEHiCZ3iFN2fsvDjvzseidc3JZ07gD5zPH/oFkYs=</latexit>

Ji · Jj = �ij
<latexit sha1_base64="RZ65DcizUotcyFbgX1ldtoS2C58=">AAACBnicbVDLSsNAFJ34rPVVdSnCYBFclaQWdCMU3EhXFewDmhAmk0k77eTBzI1QQlZu/BU3LhRx6ze482+cPhbaeuDC4Zx7ufceLxFcgWl+Gyura+sbm4Wt4vbO7t5+6eCwreJUUtaisYhl1yOKCR6xFnAQrJtIRkJPsI43upn4nQcmFY+jexgnzAlJP+IBpwS05JZOGi7HNvVjwA03G+b4Gts+E0DcjA9zt1Q2K+YUeJlYc1JGczTd0pftxzQNWQRUEKV6lpmAkxEJnAqWF+1UsYTQEemznqYRCZlysukbOT7Tio+DWOqKAE/V3xMZCZUah57uDAkM1KI3Ef/zeikEV07GoyQFFtHZoiAVGGI8yQT7XDIKYqwJoZLrWzEdEEko6OSKOgRr8eVl0q5WrItK9a5WrtfmcRTQMTpF58hCl6iOblETtRBFj+gZvaI348l4Md6Nj1nrijGfOUJ/YHz+ABBfmDM=</latexit>

Kira - A Feynman Integral Reduction Program 
Maierhoefer, Usovitsch, Uwer (2018)

FiniteFlow: multivariate functional reconstruction using finite fields and 
dataflow graphs 
Peraro (2019)

 Two-loop five-point massless QCD amplitudes within the integration-by-
parts approach 
Chawdhry,Lim,Mitov (2018)

 Integration-by-parts reductions of Feynman integrals using Singular and 
GPI-Space 
Bendle, Boehm, Decker,Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

FIRE6: Feynman Integral REduction with Modular Arithmetic 
Smirnov, A. V. and Chuharev (2019)

What is the Vector Space V ?

What is the dual vector space V ⇤
<latexit sha1_base64="kX9W8nFjpBCZAY16uhfaNLbQhr4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBPJTdWtBjwYvHCnZbaNeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL0w408Z1v53C2vrG5lZxu7Szu7d/UD488rVMFaEtIrlUnRBrypmgLcMMp51EURyHnLbD8c3Mbz9RpZkU92aS0CDGQ8EiRrCxku8/ZBdT1C9X3Ko7B1olXk4qkKPZL3/1BpKkMRWGcKx113MTE2RYGUY4nZZ6qaYJJmM8pF1LBY6pDrL5tVN0ZpUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+umJroOMiaS1FBBFouilCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C2/vEr8WtW7rNbu6pVGPY+jCCdwCufgwRU04Baa0AICj/AMr/DmSOfFeXc+Fq0FJ585hj9wPn8A5GaOog==</latexit>

What is the scalar product V ⇥ V ⇤ ! C
<latexit sha1_base64="CLzbj8oPaDMaJNN/tQwDgXc8Ahk=">AAACDnicbVA9TwJBFNzDL8SvU0ubjYTEWJA7JNGShMYSEzlIOCR7ywIb9m4vu+805MIvsPGv2FhojK21nf/GPaBQcJJNJjPvZedNEAuuwXG+rdza+sbmVn67sLO7t39gHx55WiaKsiaVQqp2QDQTPGJN4CBYO1aMhIFgrWBcz/zWPVOay+gWJjHrhmQY8QGnBIzUs0se9oGHTGPvLj2fYl/x4QiIUvIB+yGBURCk9WnPLjplZwa8StwFKaIFGj37y+9LmoQsAiqI1h3XiaGbEgWcCjYt+IlmMaFjMmQdQyNiEnTT2TlTXDJKHw+kMi8CPFN/b6Qk1HoSBmYyS6iXvUz8z+skMLjqpjyKE2ARnX80SAQGibNucJ8rRkFMDCFUcZMV0xFRhIJpsGBKcJdPXiVepexelCs31WKtuqgjj07QKTpDLrpENXSNGqiJKHpEz+gVvVlP1ov1bn3MR3PWYucY/YH1+QPDbpvn</latexit>
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Different New Ideas ?

Intersection Theory

I =
⌫X

i=1

ciJi
<latexit sha1_base64="KIPCwVXH6SwBBAlmxBp9E7hpmE4=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCWlEixIlViAqUj0ITUhclynteo4ke0gVVF2Fn6FhQGEWPkBNv4Gp80ALUeydXzOvbq+x48Zlcqyvo3Syura+kZ5s7K1vbO7Z+4fdGWUCEw6OGKR6PtIEkY56SiqGOnHgqDQZ6TnTy5zv/dAhKQRv1PTmLghGnEaUIyUljyzeg0voCOT0EupZnZ2nzo8ySDW7wze5Ldn1qy6NQNcJnZBaqBA2zO/nGGEk5BwhRmScmBbsXJTJBTFjGQVJ5EkRniCRmSgKUchkW462yWDx1oZwiAS+nAFZ+rvjhSFUk5DX1eGSI3lopeL/3mDRAXnbkp5nCjC8XxQkDCoIpgHA4dUEKzYVBOEBdV/hXiMBMJKx1fRIdiLKy+TbqNun9Ybt81aq1nEUQZHoApOgA3OQAtcgTboAAwewTN4BW/Gk/FivBsf89KSUfQcgj8wPn8AL/2Z3A==</latexit>

Goal : To define an Vector space with inner product for the FIs 

I · Jj
�
C�1

�
ji

<latexit sha1_base64="hAFGR7NHWwH5IyD6ATYE6SfwBTg=">AAACD3icbVC7SgNBFJ2Nrxhfq5Y2g0GJhWE3BrQMpFGrCOYB2RhmJ7PJmNkHM3eFsOwf2PgrNhaK2Nra+TdOHoUmHrhwOOde7r3HjQRXYFnfRmZpeWV1Lbue29jc2t4xd/caKowlZXUailC2XKKY4AGrAwfBWpFkxHcFa7rD6thvPjCpeBjcwihiHZ/0A+5xSkBLXfP4Cju0FwK+7ib3KXYE86BQvUtO7dSRvD+AE63ztGvmraI1AV4k9ozk0Qy1rvnl9EIa+ywAKohSbduKoJMQCZwKluacWLGI0CHps7amAfGZ6iSTf1J8pJUe9kKpKwA8UX9PJMRXauS7utMnMFDz3lj8z2vH4F10Eh5EMbCAThd5scAQ4nE4uMcloyBGmhAqub4V0wGRhIKOMKdDsOdfXiSNUtE+K5ZuyvlKeRZHFh2gQ1RANjpHFXSJaqiOKHpEz+gVvRlPxovxbnxMWzPGbGYf/YHx+QOwV5vK</latexit>

Ji · Jj = Cij 6= �ij
<latexit sha1_base64="OUg6eioufzFisRvunrSb5MQG7Uk=">AAACEnicbZA9SwNBEIb3/IzxK2ppsxgEbcKdBrQRBBtJFcF8QC4ce3uTuLq3d+7OCeHIb7Dxr9hYKGJrZee/cRNTaPSFhYd3ZpidN0ylMOi6n87M7Nz8wmJhqbi8srq2XtrYbJok0xwaPJGJbofMgBQKGihQQjvVwOJQQiu8ORvVW3egjUjUJQ5S6Masr0RPcIbWCkr7tUBQn0cJ0lqQXw/pCT0LcmHBV3BL/QgksrERlMpuxR2L/gVvAmUyUT0offhRwrMYFHLJjOl4bordnGkUXMKw6GcGUsZvWB86FhWLwXTz8UlDumudiPYSbZ9COnZ/TuQsNmYQh7YzZnhlpmsj879aJ8PecTcXKs0QFP9e1MskxYSO8qGR0MBRDiwwroX9K+VXTDOONsWiDcGbPvkvNA8q3mHl4KJaPq1O4iiQbbJD9ohHjsgpOSd10iCc3JNH8kxenAfnyXl13r5bZ5zJzBb5Jef9C+M9nPg=</latexit>

I · Ji
<latexit sha1_base64="MFkqm8HhPccS8un51aM9CG+qIvY=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSJ4Kru1oMeCF/VUwX5Au5RsNtuGZpM1yRbK0t/hxYMiXv0x3vw3pu0etPXBwOO9GWbmBQln2rjut7O2vrG5tV3YKe7u7R8clo6OW1qmitAmkVyqToA15UzQpmGG006iKI4DTtvB6Gbmt8dUaSbFo5kk1I/xQLCIEWys5N+hHgmlQff9jE37pbJbcedAq8TLSRlyNPqlr14oSRpTYQjHWnc9NzF+hpVhhNNpsZdqmmAywgPatVTgmGo/mx89RedWCVEklS1h0Fz9PZHhWOtJHNjOGJuhXvZm4n9eNzXRtZ8xkaSGCrJYFKUcGYlmCaCQKUoMn1iCiWL2VkSGWGFibE5FG4K3/PIqaVUr3mWl+lAr12t5HAU4hTO4AA+uoA630IAmEHiCZ3iFN2fsvDjvzseidc3JZ07gD5zPH/oFkYs=</latexit>

Ji · Jj = �ij
<latexit sha1_base64="RZ65DcizUotcyFbgX1ldtoS2C58=">AAACBnicbVDLSsNAFJ34rPVVdSnCYBFclaQWdCMU3EhXFewDmhAmk0k77eTBzI1QQlZu/BU3LhRx6ze482+cPhbaeuDC4Zx7ufceLxFcgWl+Gyura+sbm4Wt4vbO7t5+6eCwreJUUtaisYhl1yOKCR6xFnAQrJtIRkJPsI43upn4nQcmFY+jexgnzAlJP+IBpwS05JZOGi7HNvVjwA03G+b4Gts+E0DcjA9zt1Q2K+YUeJlYc1JGczTd0pftxzQNWQRUEKV6lpmAkxEJnAqWF+1UsYTQEemznqYRCZlysukbOT7Tio+DWOqKAE/V3xMZCZUah57uDAkM1KI3Ef/zeikEV07GoyQFFtHZoiAVGGI8yQT7XDIKYqwJoZLrWzEdEEko6OSKOgRr8eVl0q5WrItK9a5WrtfmcRTQMTpF58hCl6iOblETtRBFj+gZvaI348l4Md6Nj1nrijGfOUJ/YHz+ABBfmDM=</latexit>

Kira - A Feynman Integral Reduction Program 
Maierhoefer, Usovitsch, Uwer (2018)

FiniteFlow: multivariate functional reconstruction using finite fields and 
dataflow graphs 
Peraro (2019)

 Two-loop five-point massless QCD amplitudes within the integration-by-
parts approach 
Chawdhry,Lim,Mitov (2018)

 Integration-by-parts reductions of Feynman integrals using Singular and 
GPI-Space 
Bendle, Boehm, Decker,Georgoudis, Pfreundt, Rahn, Wasser, Zhang (2019)

FIRE6: Feynman Integral REduction with Modular Arithmetic 
Smirnov, A. V. and Chuharev (2019)

Mastrolia, Mizera (2018)

What is the Vector Space V ?

What is the dual vector space V ⇤
<latexit sha1_base64="kX9W8nFjpBCZAY16uhfaNLbQhr4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBPJTdWtBjwYvHCnZbaNeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL0w408Z1v53C2vrG5lZxu7Szu7d/UD488rVMFaEtIrlUnRBrypmgLcMMp51EURyHnLbD8c3Mbz9RpZkU92aS0CDGQ8EiRrCxku8/ZBdT1C9X3Ko7B1olXk4qkKPZL3/1BpKkMRWGcKx113MTE2RYGUY4nZZ6qaYJJmM8pF1LBY6pDrL5tVN0ZpUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+umJroOMiaS1FBBFouilCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMmG4C2/vEr8WtW7rNbu6pVGPY+jCCdwCufgwRU04Baa0AICj/AMr/DmSOfFeXc+Fq0FJ585hj9wPn8A5GaOog==</latexit>

What is the scalar product V ⇥ V ⇤ ! C
<latexit sha1_base64="CLzbj8oPaDMaJNN/tQwDgXc8Ahk=">AAACDnicbVA9TwJBFNzDL8SvU0ubjYTEWJA7JNGShMYSEzlIOCR7ywIb9m4vu+805MIvsPGv2FhojK21nf/GPaBQcJJNJjPvZedNEAuuwXG+rdza+sbmVn67sLO7t39gHx55WiaKsiaVQqp2QDQTPGJN4CBYO1aMhIFgrWBcz/zWPVOay+gWJjHrhmQY8QGnBIzUs0se9oGHTGPvLj2fYl/x4QiIUvIB+yGBURCk9WnPLjplZwa8StwFKaIFGj37y+9LmoQsAiqI1h3XiaGbEgWcCjYt+IlmMaFjMmQdQyNiEnTT2TlTXDJKHw+kMi8CPFN/b6Qk1HoSBmYyS6iXvUz8z+skMLjqpjyKE2ARnX80SAQGibNucJ8rRkFMDCFUcZMV0xFRhIJpsGBKcJdPXiVepexelCs31WKtuqgjj07QKTpDLrpENXSNGqiJKHpEz+gVvVlP1ov1bn3MR3PWYucY/YH1+QPDbpvn</latexit>
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Different New Ideas ?

Intersection Theory

I =
⌫X

i=1

ciJi
<latexit sha1_base64="KIPCwVXH6SwBBAlmxBp9E7hpmE4=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCWlEixIlViAqUj0ITUhclynteo4ke0gVVF2Fn6FhQGEWPkBNv4Gp80ALUeydXzOvbq+x48Zlcqyvo3Syura+kZ5s7K1vbO7Z+4fdGWUCEw6OGKR6PtIEkY56SiqGOnHgqDQZ6TnTy5zv/dAhKQRv1PTmLghGnEaUIyUljyzeg0voCOT0EupZnZ2nzo8ySDW7wze5Ldn1qy6NQNcJnZBaqBA2zO/nGGEk5BwhRmScmBbsXJTJBTFjGQVJ5EkRniCRmSgKUchkW462yWDx1oZwiAS+nAFZ+rvjhSFUk5DX1eGSI3lopeL/3mDRAXnbkp5nCjC8XxQkDCoIpgHA4dUEKzYVBOEBdV/hXiMBMJKx1fRIdiLKy+TbqNun9Ybt81aq1nEUQZHoApOgA3OQAtcgTboAAwewTN4BW/Gk/FivBsf89KSUfQcgj8wPn8AL/2Z3A==</latexit>

Goal : To define an Vector space with inner product for the FIs 

I · Jj
�
C�1

�
ji

<latexit sha1_base64="hAFGR7NHWwH5IyD6ATYE6SfwBTg=">AAACD3icbVC7SgNBFJ2Nrxhfq5Y2g0GJhWE3BrQMpFGrCOYB2RhmJ7PJmNkHM3eFsOwf2PgrNhaK2Nra+TdOHoUmHrhwOOde7r3HjQRXYFnfRmZpeWV1Lbue29jc2t4xd/caKowlZXUailC2XKKY4AGrAwfBWpFkxHcFa7rD6thvPjCpeBjcwihiHZ/0A+5xSkBLXfP4Cju0FwK+7ib3KXYE86BQvUtO7dSRvD+AE63ztGvmraI1AV4k9ozk0Qy1rvnl9EIa+ywAKohSbduKoJMQCZwKluacWLGI0CHps7amAfGZ6iSTf1J8pJUe9kKpKwA8UX9PJMRXauS7utMnMFDz3lj8z2vH4F10Eh5EMbCAThd5scAQ4nE4uMcloyBGmhAqub4V0wGRhIKOMKdDsOdfXiSNUtE+K5ZuyvlKeRZHFh2gQ1RANjpHFXSJaqiOKHpEz+gVvRlPxovxbnxMWzPGbGYf/YHx+QOwV5vK</latexit>

Ji · Jj = Cij 6= �ij
<latexit sha1_base64="OUg6eioufzFisRvunrSb5MQG7Uk=">AAACEnicbZA9SwNBEIb3/IzxK2ppsxgEbcKdBrQRBBtJFcF8QC4ce3uTuLq3d+7OCeHIb7Dxr9hYKGJrZee/cRNTaPSFhYd3ZpidN0ylMOi6n87M7Nz8wmJhqbi8srq2XtrYbJok0xwaPJGJbofMgBQKGihQQjvVwOJQQiu8ORvVW3egjUjUJQ5S6Masr0RPcIbWCkr7tUBQn0cJ0lqQXw/pCT0LcmHBV3BL/QgksrERlMpuxR2L/gVvAmUyUT0offhRwrMYFHLJjOl4bordnGkUXMKw6GcGUsZvWB86FhWLwXTz8UlDumudiPYSbZ9COnZ/TuQsNmYQh7YzZnhlpmsj879aJ8PecTcXKs0QFP9e1MskxYSO8qGR0MBRDiwwroX9K+VXTDOONsWiDcGbPvkvNA8q3mHl4KJaPq1O4iiQbbJD9ohHjsgpOSd10iCc3JNH8kxenAfnyXl13r5bZ5zJzBb5Jef9C+M9nPg=</latexit>

I · Ji
<latexit sha1_base64="MFkqm8HhPccS8un51aM9CG+qIvY=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSJ4Kru1oMeCF/VUwX5Au5RsNtuGZpM1yRbK0t/hxYMiXv0x3vw3pu0etPXBwOO9GWbmBQln2rjut7O2vrG5tV3YKe7u7R8clo6OW1qmitAmkVyqToA15UzQpmGG006iKI4DTtvB6Gbmt8dUaSbFo5kk1I/xQLCIEWys5N+hHgmlQff9jE37pbJbcedAq8TLSRlyNPqlr14oSRpTYQjHWnc9NzF+hpVhhNNpsZdqmmAywgPatVTgmGo/mx89RedWCVEklS1h0Fz9PZHhWOtJHNjOGJuhXvZm4n9eNzXRtZ8xkaSGCrJYFKUcGYlmCaCQKUoMn1iCiWL2VkSGWGFibE5FG4K3/PIqaVUr3mWl+lAr12t5HAU4hTO4AA+uoA630IAmEHiCZ3iFN2fsvDjvzseidc3JZ07gD5zPH/oFkYs=</latexit>

Ji · Jj = �ij
<latexit sha1_base64="RZ65DcizUotcyFbgX1ldtoS2C58=">AAACBnicbVDLSsNAFJ34rPVVdSnCYBFclaQWdCMU3EhXFewDmhAmk0k77eTBzI1QQlZu/BU3LhRx6ze482+cPhbaeuDC4Zx7ufceLxFcgWl+Gyura+sbm4Wt4vbO7t5+6eCwreJUUtaisYhl1yOKCR6xFnAQrJtIRkJPsI43upn4nQcmFY+jexgnzAlJP+IBpwS05JZOGi7HNvVjwA03G+b4Gts+E0DcjA9zt1Q2K+YUeJlYc1JGczTd0pftxzQNWQRUEKV6lpmAkxEJnAqWF+1UsYTQEemznqYRCZlysukbOT7Tio+DWOqKAE/V3xMZCZUah57uDAkM1KI3Ef/zeikEV07GoyQFFtHZoiAVGGI8yQT7XDIKYqwJoZLrWzEdEEko6OSKOgRr8eVl0q5WrItK9a5WrtfmcRTQMTpF58hCl6iOblETtRBFj+gZvaI348l4Md6Nj1nrijGfOUJ/YHz+ABBfmDM=</latexit>
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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Single-valued differential Form

n <latexit sha1_base64="SD5O6zcvG2pCm6wBnki5GgLB3LQ=">AAACB3icbVDLSgMxFM3UV62v+ti5CRZBRMpMK+iy6EZcVbAP6JSSSdM2NDMZkjtCHeYDXPgPbnXjTtz6GYKf4EeYabvQ1gMJh3PPvTc5Xii4Btv+tDILi0vLK9nV3Nr6xuZWfnunrmWkKKtRKaRqekQzwQNWAw6CNUPFiO8J1vCGl2m9cceU5jK4hVHI2j7pB7zHKQEjdfJ77nhGrFg3wbF7wftunHTyBbtoj4HniTMlhcpx+fr70YVqJ//ldiWNfBYAFUTrlmOH0I6JAk4FS3JupFlI6JD0WcvQgPhMt+Px5gQfGqWLe1KZEwAeq787YuJrPfI94/QJDPRsLRVP0gukFPo/VyuC3nk75kEYAQvoZGUvEhgkTkPBXa4YBTEyhFDFzasxHRBFKJjociYOZ/bz86ReKjrlYunG5HKKJsiifXSAjpCDzlAFXaEqqiGK7tETekYv1oP1ar1Z7xNrxpr27KI/sD5+AKhbnOM=</latexit>

n

<latexit sha1_base64="SD5O6zcvG2pCm6wBnki5GgLB3LQ=">AAACB3icbVDLSgMxFM3UV62v+ti5CRZBRMpMK+iy6EZcVbAP6JSSSdM2NDMZkjtCHeYDXPgPbnXjTtz6GYKf4EeYabvQ1gMJh3PPvTc5Xii4Btv+tDILi0vLK9nV3Nr6xuZWfnunrmWkKKtRKaRqekQzwQNWAw6CNUPFiO8J1vCGl2m9cceU5jK4hVHI2j7pB7zHKQEjdfJ77nhGrFg3wbF7wftunHTyBbtoj4HniTMlhcpx+fr70YVqJ//ldiWNfBYAFUTrlmOH0I6JAk4FS3JupFlI6JD0WcvQgPhMt+Px5gQfGqWLe1KZEwAeq787YuJrPfI94/QJDPRsLRVP0gukFPo/VyuC3nk75kEYAQvoZGUvEhgkTkPBXa4YBTEyhFDFzasxHRBFKJjociYOZ/bz86ReKjrlYunG5HKKJsiifXSAjpCDzlAFXaEqqiGK7tETekYv1oP1ar1Z7xNrxpr27KI/sD5+AKhbnOM=</latexit>

Twisted Cycle

Twisted Co-cycle

Aomoto,  Gelfand, Kita, Cho, Matsumoto,

Mimachi, Mizera, Yoshida

h'|C]

<latexit sha1_base64="qVWLcupTJ+p45odsgY2xI/UMv9I=">AAACB3icdVBNS8NAEN34bf2KehRksQieQlJDqzexF48VrApNKJPttl3cbMLuplBib178K148KOLVv+DNf+OmraCiDwYe780wMy9KOVPadT+smdm5+YXFpeXSyura+oa9uXWpkkwS2iQJT+R1BIpyJmhTM83pdSopxBGnV9FNvfCvBlQqlogLPUxpGENPsC4joI3UtncDDqLHKQ4GINM+u8VBDLpPgOf1EQ7bdtl1jo+qFb+KXcd1a17FK0il5h/62DNKgTKaotG234NOQrKYCk04KNXy3FSHOUjNCKejUpApmgK5gR5tGSogpirMx3+M8L5ROribSFNC47H6fSKHWKlhHJnO4kj12yvEv7xWprtHYc5EmmkqyGRRN+NYJ7gIBXeYpETzoSFAJDO3YtIHCUSb6EomhK9P8f/ksuJ4vnN87pdPTqdxLKEdtIcOkIdq6ASdoQZqIoLu0AN6Qs/WvfVovVivk9YZazqzjX7AevsEI0WZhA==</latexit>

Pairing



Manoj Kumar Mandal, INFN Padova, Italy 13

Basics of Intersection Theory
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Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [81, 82], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
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Equivalence Class 

H
n
! ⌘ {n-forms 'n |r!'n = 0}/{r!'n�1},
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Vector Space of n-forms Twisted Cohomology 
Group

Dual space

2

cast in the form [22],

I =

Z

C
u(z)'(z) , (1)

where the integration variables z = (z1, . . . , zn) are the
propagators of the diagrams, supplemented by a set of
auxiliary propagators (related to the irreducible scalar
products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function u(z) is
multi-valued, and it is defined either as u(z) = B�(z)
[23], or as u(z) =

Q
i Bi(z)�i [24]. The factors B and

Bi are graph (Baikov) polynomials; their exponents (�
or �i /2 Z) depend on the dimensional regulator d, and
on the number of loops and external momenta of the
corresponding diagram. The integration domain C is
defined as such that, according to the case, either B orQ

i Bi vanishes on its boundary @C. In the integrand, '
is a single-valued differential form, and can generically be
written as

'(z) = '̂(z) dnz , '̂(z) ⌘ f(z)

z
a1
1 · · · zan

n
, (2)

with d
nz ⌘ dz1 ^ . . . ^ dzn, and where ai 2 Z, and f is

a rational function of z. Multiple-cut integrals [25, 26],
identified by the on-shell conditions zi1= . . .=zik=0, are
also of the form (1), but their integrands depend on fewer
integration variables (and their integration contour is
modified), see [9, 11].

Feynman integrals (and, more generally, hypergeomet-
ric integrals of the type in eq.(1)), whose integrands differ
by terms proportional to covariant derivatives, give the
same result after integration. Employing Stokes’ theorem,
we find equivalence classes of n-forms, ' ⇠ '+r!⇠, for
any (n�1)-form ⇠ and where r! ⌘ d+ !^ is a covariant
derivative with a one-form ! ⌘ d log u, such that

R
C ur!⇠

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group H

n
! [27]. We denote its elements by

h'| 2 H
n
! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],

I = h'|C] . (3)

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
⌫X

i=1

ci Ji , () h'| =
⌫X

i=1

ci hei| , (5)

with the coefficients determined by the master decompo-
sition formula [9, 11],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (6)

where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (7)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
yields the use of complex Morse (Picard–Lefschetz) theory
to determine ⌫ as the number of critical points of the
function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (8)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (9)

with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,

r�! = d� !^
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h'L|CL] =
Z

CL

u(z)'L(z)
<latexit sha1_base64="NpOg9tYWdXoDdS7FcRw39kBTdRw="></latexit>

Integral

h'L|'Ri
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Intersection Number

Given two (univariate) 1-forms 'L and 'R, we define the intersection number as [77, 78]

h'L|'Ri! =
X

p2P
Resz=p

⇣
 p 'R

⌘
, (3.22)

where,  p is a function (0-form), solution to the differential equation r! = 'L, around p,
i.e.,

r!p p = 'L,p , (3.23)

where r! was defined in eq. (2.5) (the notation fp indicates the Laurent expansion of f
around z = p). The above equation can be also solved globally, however only a handful of
terms in the Laurent expansion around z = p are needed to evaluate the residue in (3.22).
In particular, after defining ⌧ ⌘ z � p, and the ansatz,

 p =
maxX

j=min

 
(j)
p ⌧

j +O
�
⌧
max+1

�
, (3.24)

min = ordp('L) + 1 , max = �ordp('R)� 1 , (3.25)

the differential equation in eq. (3.23) freezes all unknown coefficients  (j)
p . In other words,

the Laurent expansion of  p around each p, is determined by the Laurent expansion of 'L,R

and of !. A given point p contributes only if the condition min  max is satisfied, and the
above expansion exists only if Resz=p(!) is not a non-positive integer.

Symmetry Properties. Intersection numbers of one-forms have the following symmetry
property under the exchange of 'L and 'R,

h'L|'Ri! = �h'R|'Li�! , (3.26)

Notice that on the r.h.s. the intersection number is evaluated with respect to the form �!
(instead of !).

Logarithmic Forms. When both 'L and 'R are logarithmic, meaning that ordp('L/R) �
�1 for all points p 2 P, then the formula (3.22) simplifies to

h'L|'Ri! =
X

p2P

Resz=p('L) Resz=p('R)

Resz=p(!)
. (3.27)

Note that in this case the intersection number becomes symmetric in 'L and 'R, i.e.,

h'L|'Ri! = h'R|'Li! , (3.28)

while (3.26) still holds.

Vector Space Metric, Integral Decomposition and Master Integrals. Following
the discussion in Sec. 2, consider an ⌫-dimensional vector space, and its dual space, whose
basis are respectively represented as, hei| and |hii with i = 1, 2, . . . , ⌫. We use intersection
numbers to define a metric on this space

Cij ⌘ hei|hji , (3.29)
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First Order Differential Equation

Matsumoto, Mizera

2

can be found using an ansatz for each component  (n)
i , see

[2, 3]. Such a solution exists, if the matrix Reszn=p ⌦(n)

does not have any non-negative integer eigenvalues, which
we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h

(0)
1 i = 1, and we

impose the initial conditions

⌦̂(1)
11 = !̂1 , 0h'

(1)
L |h

(0)
1 i = '

(n)
L , '

(1)
R,1 = '

(n)
R . (9)

In this case, eqs. (5,6) reduce to a computation of univari-
ate intersection numbers [4, 5] previously studied in [2, 3].
Plugging everything together, eq. (5) can be expressed as
(where summing over repeated indices is understood)

nh'
(n)
L |'

(n)
R i =(�1)n

X

pn2Pn

· · ·

X

p12P1

Res
zn=pn

· · · Res
z1=p1

⇣
'
(n)
L  

(1)
1i1
 
(2)
i1i2

· · · 
(n�1)
in�2in�1

 
(n)
in�1

⌘
, (10)

where im = 1, . . . , ⌫m, and each  
(m)
im�1im

for m =
1, . . . ,n�1 is the solution of the system of differential
equations,

@zm 
(m)
im�1im

�

X

jm�1

⌦̂(m)
im�1jm�1

 
(m)
jm�1im

= ĥ
(m)
im�1im

,(11)

with |h
(m)
im�1im

i = ĥ
(m)
im�1im

dzm coming from the projec-
tion:

|h
(m)
im

i =
X

im�1

|h
(m�1)
im�1

i ^ |h
(m)
im�1im

i , (12)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (11) are computed analogously to eq. (7). Notice
that all  (m) entering eq. (10) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (5,
10) is the key formula used in this section. Paired with
the master decomposition formula eq. (3), the above
recursion for intersection numbers yields an expansion of
multi-fold integrals of Aomoto-Gel’fand type, as discussed
in this paper, in terms of master integrals.

Counting Master Integrals: Euler Characteristics, Morse
Theory, and Lefschetz Thimbles - Let us consider a single-
valued k-form 'k and a multi-valued function u(z) in-
tegrated over a k-real-dimensional submanifold Ck ⇢ X

inside of some space X of complex dimension n,
Z

Ck

u(z)'k(z). (13)

If u(z) regulates all boundaries of Ck then by Stokes’
theorem:

0 =

Z

Ck

d (u(z)'k�1) =

Z

Ck

u(z)r!'k�1, (14)

where r! ⌘ d+ !^ is a covariant derivative with a one-
form ! ⌘ d log u(z). Thus adding terms of the form
r!'k�1 to 'k does not change the value of the integral
of eq. (13). Similarly, we can impose that integrals over
boundary terms of the form @Ck+1 vanish:

0 =

Z

@Ck+1

u(z)'k =

Z

Ck+1

u(z)r!'k, (15)

which corresponds to r!'k = 0. These two requirements
define a set of natural vector spaces for k = 0, 1, . . . , 2n:

H
k
! ⌘ {k-forms 'k |r!'k = 0}/{r!'k�1}, (16)

called twisted cohomology groups [6]. Under some as-
sumptions amounting to the fact that u(z) regulates all
boundaries of X, one can show that in fact Hn

! is the only
non-trivial space and all other Hk 6=n

! vanish [7]. From now
on we consider only such cases, even though Feynman in-
tegrals are known to sometimes violate these assumptions
[3, 8].

One can also construct a dual vector space (Hn
! )

⇤ =
H

n
�!, with the same properties, given by a replacement

! ! �! in the above definition eq. (16). In this work we
consider h'L| 2 H

n
! and |'Ri 2 H

n
�! and a scalar product

h'L|'Ri called the intersection number [4]. Similarly,
eq. (13) is a scalar product h'k|Ck] between H

k
! 3 h'k|

and the twisted homology group H
!
k 3 |Ck], which is

non-zero only for k=n. Since |Cn] is always constant in
Feynman integral computations, Hn

! can be also regarded
as the vector space of Feynman integrals in a given family
with the same !.

The Euler characteristic �(X) of the space X can be
computed as an alternating sum of dimensions of Hn

! ,

�(X) =
2nX

k=0

(�1)k dimH
k
!. (17)

Since all Hk 6=n
! vanish, we find that the dimension of Hn

! ,
and hence also the number ⌫ of MIs is given by

⌫ = (�1)n�(X). (18)

Thus ⌫ can be computed using one of the many ways of
evaluating the topological invariant �(X). We review a
few of them below. Since X = CPn

�P!, where P! ⌘

{set of poles of !}, we can simplify the above relation to

⌫ = (�1)n (n+1� �(P!)) , (19)

where we used the fact that �(CPn) = n+1 and the
inclusion-exclusion principle for Euler characteristics. The
computation thus amounts to evaluating the Euler char-
acteristic �(P!) of the projective variety P!, see [9–11]
for related approaches.

Let us introduce a simple function u(z) that will serve as
an instructive example in the remainder of this appendix:

u(z) =
�
(z2�s

2)(z2�⇢2)
��

, (20)
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which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (11) are computed analogously to eq. (7). Notice
that all  (m) entering eq. (10) need to be computed only
once for a given family of integrals.

The multivariate intersection number given in eqs. (5,
10) is the key formula used in this section. Paired with
the master decomposition formula eq. (3), the above
recursion for intersection numbers yields an expansion of
multi-fold integrals of Aomoto-Gel’fand type, as discussed
in this paper, in terms of master integrals.

Counting Master Integrals: Euler Characteristics, Morse
Theory, and Lefschetz Thimbles - Let us consider a single-
valued k-form 'k and a multi-valued function u(z) in-
tegrated over a k-real-dimensional submanifold Ck ⇢ X

inside of some space X of complex dimension n,
Z

Ck

u(z)'k(z). (13)

If u(z) regulates all boundaries of Ck then by Stokes’
theorem:

0 =

Z

Ck

d (u(z)'k�1) =

Z

Ck

u(z)r!'k�1, (14)

where r! ⌘ d+ !^ is a covariant derivative with a one-
form ! ⌘ d log u(z). Thus adding terms of the form
r!'k�1 to 'k does not change the value of the integral
of eq. (13). Similarly, we can impose that integrals over
boundary terms of the form @Ck+1 vanish:

0 =
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u(z)'k =
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u(z)r!'k, (15)

which corresponds to r!'k = 0. These two requirements
define a set of natural vector spaces for k = 0, 1, . . . , 2n:

H
k
! ⌘ {k-forms 'k |r!'k = 0}/{r!'k�1}, (16)

called twisted cohomology groups [6]. Under some as-
sumptions amounting to the fact that u(z) regulates all
boundaries of X, one can show that in fact Hn

! is the only
non-trivial space and all other Hk 6=n

! vanish [7]. From now
on we consider only such cases, even though Feynman in-
tegrals are known to sometimes violate these assumptions
[3, 8].

One can also construct a dual vector space (Hn
! )

⇤ =
H

n
�!, with the same properties, given by a replacement

! ! �! in the above definition eq. (16). In this work we
consider h'L| 2 H
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�! and a scalar product

h'L|'Ri called the intersection number [4]. Similarly,
eq. (13) is a scalar product h'k|Ck] between H
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and the twisted homology group H
!
k 3 |Ck], which is

non-zero only for k=n. Since |Cn] is always constant in
Feynman integral computations, Hn

! can be also regarded
as the vector space of Feynman integrals in a given family
with the same !.

The Euler characteristic �(X) of the space X can be
computed as an alternating sum of dimensions of Hn
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{set of poles of !}, we can simplify the above relation to
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where we used the fact that �(CPn) = n+1 and the
inclusion-exclusion principle for Euler characteristics. The
computation thus amounts to evaluating the Euler char-
acteristic �(P!) of the projective variety P!, see [9–11]
for related approaches.
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can be found using an ansatz for each component  (n)
i , see

[2, 3]. Such a solution exists, if the matrix Reszn=p ⌦(n)

does not have any non-negative integer eigenvalues, which
we assume from now on.
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the master decomposition formula eq. (3), the above
recursion for intersection numbers yields an expansion of
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in eq. (11) are computed analogously to eq. (7). Notice
that all  (m) entering eq. (10) need to be computed only
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the master decomposition formula eq. (3), the above
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for related approaches.

Let us introduce a simple function u(z) that will serve as
an instructive example in the remainder of this appendix:

u(z) =
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2)(z2�⇢2)
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3

which arises physically from the maximal cut of a two-loop
non-planar triangle diagram [2] and gives rise to Appell
F1 functions with some constants s, ⇢, �. Computing
! = d log u(z) gives straightforwardly P! = {±⇢,±s,1},
and hence X = CP1

�P! is a one-dimensional space
parametrized by an inhomogeneous coordinate z. The
point at infinity is removed from X since Resz=1(!) 6= 0.
Since the Euler characteristic of 5 distinct points is simply
�(P!) = 5, using eq. (19) we find:

⌫ = (�1)1 (2� 5) = 3, (21)

which is the correct number of MIs in this case [2].
Let us now consider a real-valued function h(z) ⌘

Re(log u(z)), called a Morse function, which assigns a
“height” to every point z 2 X. Special role in this con-
struction is played by critical points z⇤ of h(z) defined
by dh(z⇤) = 0. Using Cauchy–Riemann equations it is
straightforward to show that this condition is the same as
! =

Pn
i=1 !̂idzi = 0 and thus the critical point equations

read

!̂i = @zi log u(z
⇤) = 0, i = 1, . . . , n. (22)

We assume that all critical points are isolated and non-
degenerate. To each of them the Morse function assigns
a pair of flows, labelled by a sign ± and parametrized by
an auxiliary “time” variable ⌧ ,

dzi

d⌧
= ⌥@zih(z),

dzi

d⌧
= ⌥@zih(z), i = 1, . . . , n.

(23)
In the � case we have dh(z)/d⌧ < 0 and hence it corre-
sponds to a downward flow from the ↵-th critical point
z⇤(↵), which defines a submanifold of X called a Lefschetz
thimble (or a path of steepest descent) J↵ with some real
dimension �↵. Similarly, the + case defines an upward
flow, which generates a path of steepest ascent K↵ through
the critical point z⇤(↵), with real dimension 2n��↵. Here
�↵ is the number of unique negative directions extending
from the ↵-th critical point, called its Morse index.

One of the key results in complex Morse theory (often
called Picard–Lefschetz theory) is that the Euler charac-
teristic can be expressed as [12]:

�(X) =
2nX

�=0

(�1)� M�, (24)

where M� is the number of critical points with the Morse
index equal to �. Since u(z) is a holomorphic function,
near each z⇤(↵) we can pick local coordinates w(↵) (with
the critical point at w(↵)=0) such that the Morse function
admits an expansion:

h(w(↵)) = h(0) + Re
nX

j=1

(w(↵),j)
2 + . . . . (25)

Treating X as a real manifold with coordinates w(↵) =
x(↵) + iy(↵) we find

h(w(↵)) = h(0) +
nX

j=1

(x(↵),j)
2
�

nX

j=1

(y(↵),j)
2 + . . . (26)

and hence every critical point has a shape of a saddle
with exactly n upward and n downward directions, or
the Morse index �↵ = n. This means that only Mn is
non-vanishing and hence using eqs. (18) and (24) we find
[7, 13]:

⌫ = {number of solutions of !=0}. (27)

In the context of Feynman integrals these arguments were
first given in [8]. The critical points can be also used
to compute asymptotic behavior of intersection numbers
[14].

Let us mention that Lefschetz thimbles are integra-
tion contours along which eq. (13) converges the most
rapidly for k=n, and thus the set {J↵}

n
↵=1 can be used

as a basis of integration cycles. Likewise, the paths of
steepest ascent of h(z), K↵ are integration cycles along
which the dual integral

R
K↵

u(z)�1
'n converges the most

rapidly and {K↵}
n
↵=1 can be used a basis of H�!

n . For
explicit examples of projecting cycles onto such bases
using homological intersection numbers see App. A of [1].

�⇢ ⇢ 1�s s

z⇤(1) z⇤(2) z⇤(3)

FIG. 1: Morse–Smale complex associated to the Morse
function h(z) = Re(log u(z)) with eq. (20) and ⇢>s>0,
�>0. The set of filled dots corresponds to P! =
{±⇢,±s,1} removed from X. Empty dots at z

⇤
(↵) repre-

sent critical points of the Morse function, with paths of
steepest descent J↵ (solid lines) and ascent K↵ (dashed
lines) extending from them. They give a triangulation of
X = CP1

�P!. The arrows indicate the direction of the
flow towards lower values of h(z).

In the example at hand, eq. (20) gives ⌫=3 solutions
of the critical point equations,

z
⇤ = 0, ±

r
s2 + ⇢2

2
, (28)

in agreement with eq. (21). The form of Lefschetz thimbles
depends on the values of s, ⇢, � and here we choose ⇢>s>0
and �>0 as a concrete example. With this choice each
J↵=1,2,3 has to have endpoints on z 2 {±⇢,±s} since
this is where h(z) decays to �1, while K↵=1,2,3 can only

Aomoto (1975)

Master Decomposition Formula 

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)

Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)

where � ⌘ @x log(u). Let us remark that even if C depends on x, the differential operator @x
commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
integrands of a hypergeometric function. In this sense C provides a metric on this space.
Naturally, the prescription (2.14) is only useful if computing invariants of the type h'L|'Ri
is efficient. We argue that this is the case. It turns out that the dual space of twisted
cocycles has a straightforward interpretation as the equivalence classes:

|'i! : ' ⇠ '+r�!⇠, (2.17)

where the only difference to (2.7) is the use of the connection r�! ⌘ d� !^ instead of r!.
The resulting bilinear:

h'L|'Ri! (2.18)

is called the intersection number of h'L| and |'Ri. This term is conventionally used in the
literature on hypergeometric functions, but it does not mean that h'L|'Ri! is an integer.
In general, it can be a rational function of external parameters. The characteristic property
of the intersection number is that it is a bilinear in the two equivalence classes. We give
multiple ways of computing it throughout the text.
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Decomposition of Feynman Integral

In addition, detC cannot be zero (by definition), since it is formed from bilinears between
two bases. Therefore we conclude that:

h'| i = A|C�1B

=
⌫X

i,j=1

h'|hji (C�1)ji hei| i. (2.13)

Given the arbitrariness of | i, we obtain the master decomposition formula

h'| =
⌫X

i,j=1

h'|hji
�
C�1

�
ji
hei|, (2.14)

which provides an explicit way of projecting h'| onto a basis of hei|. Following [1], in this
paper we use (2.14) to perform the decomposition of Feynman integrals in terms of master
integrals, on the maximal cut. For example, by contracting both sides with the twisted cycle
|C] (which boils down to multiplying by u and integrating over C), we have a linear identity
between integrals: Z

C
u' =

⌫X

i,j=1

h'|hji
�
C�1

�
ji

Z

C
u ei. (2.15)

Similarly, the same idea can be used to derive linear system of differential equations
satisfied by the basis integrals hei|C] in some external variable x. It is enough to notice that

@x hei|C] = @x

Z

C
u ei =

Z

C
u (@x + �^)ei = h(@x + �^)ei|C], (2.16)
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commutes with the integral sign, due to the vanishing of u on the boundary of C. Therefore,
the problem reduces to projecting h(@x + �^)ei| on the right-hand side back onto a basis
using (2.14).

One should think of hei| and |hji as parameterizing a vector space of inequivalent
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– 10 –

(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A
remarkable observation is that we can pair up h'| and |C] to obtain the integral from (2.1),
which we denote by

h'|C] ⌘
Z

C
u'. (2.8)

This integral representation, as a bilinear in h'| and |C], is suitable for establishing linear
relations between hypergeometric functions. In fact, let us assume that the number of
linearly-independent twisted cocycles is ⌫, and indicate an arbitrary basis of forms,

he1|, he2|, · · · , he⌫ |. (2.9)

A basis decomposition is achieved by expressing an arbitrary twisted cocycle, say h'|, as a
linear combination of the above ones. This goal be achieved as follows. Introduce a dual

(and auxiliary) space of twisted cocycles, whose basis is denoted by |hii for i = 1, 2, . . . , ⌫,
and consider the matrix C, whose entries are the pairing hei|hji,

Cij = hei|hji for i, j = 1, 2, . . . , ⌫ . (2.10)

This pairing is called the intersection number of hei| and |hji. We then construct the
(⌫+1)⇥ (⌫+1) matrix M, defined as,

M =

0

BBBBBB@

h'| i h'|h1i h'|h2i . . . h'|h⌫i
he1| i he1|h1i he1|h2i . . . he1|h⌫i
he2| i he2|h1i he2|h2i . . . he2|h⌫i

...
...

... . . . ...
he⌫ | i he⌫ |h1i he⌫ |h2i . . . he⌫ |h⌫i

1

CCCCCCA
⌘
 
h'| i A|

B C

!
. (2.11)

The columns of the matrix M are labelled by | i, |h1i, |h2i, . . . , |h⌫i for an arbitrary | i,
while the rows are labelled by h'|, he1|, he2|, . . . , he⌫ |. Each entry is given by a pairing
(bilinear) of the corresponding row and column. In the second equality, we expose the
structure of M as a ⌫⇥⌫ submatrix C, a column vector B and a row vector A|, respectively
with elements Bi = hei| i and Ai = h'|hii (for i = 1, 2, . . . , ⌫).

The fact that the ⌫+1 cocycles labelling the rows and columns are necessarily linearly
dependent (since the basis is ⌫-dimensional) and that each entry of M is a bilinear, implies
that the determinant of this matrix vanishes. Using the well-known identity for the
determinant of a block matrix, we find:

detM = detC

✓
h'| i �A|C�1B

◆
= 0. (2.12)

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2 Basics of Hypergeometric Integrals
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Z

C
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dz
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, C = [0, 1] (2.2)
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Z

C
d (u ⇠) = 0. (2.3)
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0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)
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Z

C
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Z

C
u ('+r!⇠) . (2.6)
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In other words, whenever two forms are equal to each other up to integration-by-parts
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function u in the hypergeometric integral. We often refer to any representative of the class
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cast in the form [22],

I =

Z

C
u(z)'(z) , (1)

where the integration variables z = (z1, . . . , zn) are the
propagators of the diagrams, supplemented by a set of
auxiliary propagators (related to the irreducible scalar
products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function u(z) is
multi-valued, and it is defined either as u(z) = B�(z)
[23], or as u(z) =

Q
i Bi(z)�i [24]. The factors B and

Bi are graph (Baikov) polynomials; their exponents (�
or �i /2 Z) depend on the dimensional regulator d, and
on the number of loops and external momenta of the
corresponding diagram. The integration domain C is
defined as such that, according to the case, either B orQ

i Bi vanishes on its boundary @C. In the integrand, '
is a single-valued differential form, and can generically be
written as

'(z) = '̂(z) dnz , '̂(z) ⌘ f(z)

z
a1
1 · · · zan

n
, (2)

with d
nz ⌘ dz1 ^ . . . ^ dzn, and where ai 2 Z, and f is

a rational function of z. Multiple-cut integrals [25, 26],
identified by the on-shell conditions zi1= . . .=zik=0, are
also of the form (1), but their integrands depend on fewer
integration variables (and their integration contour is
modified), see [9, 11].

Feynman integrals (and, more generally, hypergeomet-
ric integrals of the type in eq.(1)), whose integrands differ
by terms proportional to covariant derivatives, give the
same result after integration. Employing Stokes’ theorem,
we find equivalence classes of n-forms, ' ⇠ '+r!⇠, for
any (n�1)-form ⇠ and where r! ⌘ d+ !^ is a covariant
derivative with a one-form ! ⌘ d log u, such that

R
C ur!⇠

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group H

n
! [27]. We denote its elements by

h'| 2 H
n
! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],

I = h'|C] . (3)

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
⌫X

i=1

ci Ji , () h'| =
⌫X

i=1

ci hei| , (5)

with the coefficients determined by the master decompo-
sition formula [9, 11],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (6)

where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (7)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
yields the use of complex Morse (Picard–Lefschetz) theory
to determine ⌫ as the number of critical points of the
function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (8)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (9)

with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,

Metric Matrix
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I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],

I = h'|C] . (3)

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
⌫X

i=1

ci Ji , () h'| =
⌫X

i=1

ci hei| , (5)

with the coefficients determined by the master decompo-
sition formula [9, 11],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (6)

where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (7)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
yields the use of complex Morse (Picard–Lefschetz) theory
to determine ⌫ as the number of critical points of the
function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (8)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (9)

with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,

I
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cast in the form [22],
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where the integration variables z = (z1, . . . , zn) are the
propagators of the diagrams, supplemented by a set of
auxiliary propagators (related to the irreducible scalar
products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function u(z) is
multi-valued, and it is defined either as u(z) = B�(z)
[23], or as u(z) =

Q
i Bi(z)�i [24]. The factors B and

Bi are graph (Baikov) polynomials; their exponents (�
or �i /2 Z) depend on the dimensional regulator d, and
on the number of loops and external momenta of the
corresponding diagram. The integration domain C is
defined as such that, according to the case, either B orQ

i Bi vanishes on its boundary @C. In the integrand, '
is a single-valued differential form, and can generically be
written as

'(z) = '̂(z) dnz , '̂(z) ⌘ f(z)

z
a1
1 · · · zan

n
, (2)

with d
nz ⌘ dz1 ^ . . . ^ dzn, and where ai 2 Z, and f is

a rational function of z. Multiple-cut integrals [25, 26],
identified by the on-shell conditions zi1= . . .=zik=0, are
also of the form (1), but their integrands depend on fewer
integration variables (and their integration contour is
modified), see [9, 11].

Feynman integrals (and, more generally, hypergeomet-
ric integrals of the type in eq.(1)), whose integrands differ
by terms proportional to covariant derivatives, give the
same result after integration. Employing Stokes’ theorem,
we find equivalence classes of n-forms, ' ⇠ '+r!⇠, for
any (n�1)-form ⇠ and where r! ⌘ d+ !^ is a covariant
derivative with a one-form ! ⌘ d log u, such that
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C ur!⇠

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group H
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! [27]. We denote its elements by

h'| 2 H
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! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],
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with the coefficients determined by the master decompo-
sition formula [9, 11],
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where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H
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�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,
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in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
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to determine ⌫ as the number of critical points of the
function log u(z). Let us define
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then the number of critical points is given by the number
of solutions of the system of equations
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with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,
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where the integration variables z = (z1, . . . , zn) are the
propagators of the diagrams, supplemented by a set of
auxiliary propagators (related to the irreducible scalar
products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function u(z) is
multi-valued, and it is defined either as u(z) = B�(z)
[23], or as u(z) =

Q
i Bi(z)�i [24]. The factors B and

Bi are graph (Baikov) polynomials; their exponents (�
or �i /2 Z) depend on the dimensional regulator d, and
on the number of loops and external momenta of the
corresponding diagram. The integration domain C is
defined as such that, according to the case, either B orQ

i Bi vanishes on its boundary @C. In the integrand, '
is a single-valued differential form, and can generically be
written as

'(z) = '̂(z) dnz , '̂(z) ⌘ f(z)
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, (2)

with d
nz ⌘ dz1 ^ . . . ^ dzn, and where ai 2 Z, and f is

a rational function of z. Multiple-cut integrals [25, 26],
identified by the on-shell conditions zi1= . . .=zik=0, are
also of the form (1), but their integrands depend on fewer
integration variables (and their integration contour is
modified), see [9, 11].

Feynman integrals (and, more generally, hypergeomet-
ric integrals of the type in eq.(1)), whose integrands differ
by terms proportional to covariant derivatives, give the
same result after integration. Employing Stokes’ theorem,
we find equivalence classes of n-forms, ' ⇠ '+r!⇠, for
any (n�1)-form ⇠ and where r! ⌘ d+ !^ is a covariant
derivative with a one-form ! ⌘ d log u, such that

R
C ur!⇠

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group H

n
! [27]. We denote its elements by

h'| 2 H
n
! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],

I = h'|C] . (3)

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
⌫X

i=1

ci Ji , () h'| =
⌫X

i=1

ci hei| , (5)

with the coefficients determined by the master decompo-
sition formula [9, 11],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (6)

where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn

! )
⇤ = H

n
�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H

n
±!,

⌫ ⌘ dimH
n
±! = (�1)n (n+1� �(P!)) , (7)

in terms of the Euler characteristic �(P!) of the projective
variety P! defined as the set of poles of !. This connection
yields the use of complex Morse (Picard–Lefschetz) theory
to determine ⌫ as the number of critical points of the
function log u(z). Let us define

! ⌘ dlog u(z) =
nX

i=1

!̂i dzi , (8)

then the number of critical points is given by the number
of solutions of the system of equations

!̂i ⌘ @zi log u(z) = 0 , i = 1, . . . , n , (9)

with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,

⌫ = Number of solutions of the system of equations
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! [27]. We denote its elements by

h'| 2 H
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! . Within this framework, the Feynman integral

I from eq. (1) can be interpreted as a pairing of h'| with
the integration contour |C],
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Consider a set of ⌫ MIs, say Ji, defined as

Ji =
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u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (4)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form h'| in
terms of the basis forms hei| , namely

I =
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with the coefficients determined by the master decompo-
sition formula [9, 11],
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where |hji (j = 1, . . . , ⌫) [28] , span a dual (and auxiliary)
vector space (Hn
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⇤ = H
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�!. The scalar product h'L|'Ri

between the two vector spaces is called intersection
number of differential forms [10]. The characterization
of the decomposition of Feynman integrals in terms of
multivariate intersection numbers [12–21] is the main
result of this letter.

Using eqs. (5,6), our algorithm for expressing any Feyn-
man integral of the type of eq. (1) as linear combinations
of MIs proceeds along three steps:

1. Determination of the number ⌫ of MIs.

2. Choice of the bases of forms hei| and |hii.

3. Evaluation of the intersection numbers for multi-variate
forms, appearing in the entries of the C-matrix, and
in h'|hji.

We finally remark that the coefficient ci in eq.(6) is
independent on the choice of the auxiliary basic forms
|hji [29]. In the following, we choose ĥj = êj , namely
|hji = |eji.

Number of Master Integrals – Within the standard IBP
decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the re-
duction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results of
[9, 11, 30–34] have been pointing to a geometrical char-
acterization of the number ⌫ of MIs, which, within our
formalism, allow us to relate it to topological properties
such as the dimension of the spaces H
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to determine ⌫ as the number of critical points of the
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then the number of critical points is given by the number
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with the short-hand notation @zi ⌘ @/@zi. Owing to
the application of these novel mathematical concepts,
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space, and a one-dimensional subspace with zn, dubbed
outer space. The aim is to express the original intersection
number nh'

(n)
L |'

(n)
R i in terms of one-dimensional residues

on the outer space and intersection numbers n�1h. . . | . . .i

on the inner space, which are assumed to be known at
this stage. The choice of the variables (and their ordering)
parametrizing the inner and outer spaces is arbitrary: in
the following, we use the generic notation m ⌘ (12 . . .m)
to denote the variables taking part in a specific computa-
tion.

Thus, the original n-forms can be decomposed accord-
ing to

h'
(n)
L | =

⌫n�1X

i=1

he
(n�1)
i | ^ h'

(n)
L,i | , (12)

|'
(n)
R i =

⌫n�1X

i=1

|h
(n�1)
i i ^ |'

(n)
R,ii , (13)

where ⌫n�1 is the number of master integrals on the
inner space with arbitrary bases he

(n�1)
i |, |h(n�1)

j i and
the metric matrix

�
C(n�1)

�
ij
⌘ n�1he

(n�1)
i |h

(n�1)
j i . (14)

In the above expressions h'
(n)
L,i | and |'

(n)
R,ji are dzn-forms

treated as coefficients of the basis expansion. They can be
obtained by a projection similar to eq. (8), for example:

|'
(n)
R,ii =

�
C�1

(n�1)

�
ij n�1he

(n�1)
j |'

(n)
R i , (15)

where from now on we use the implicit sum notation for re-
peated indices. The recursive formula for the intersection
number reads

nh'
(n)
L |'

(n)
R i=�

X

p2Pn

Res
zn=p

⇣
n�1h'

(n)
L |h

(n�1)
i i 

(n)
i

⌘
, (16)

where functions  (n)
i are solutions of the system of differ-

ential equations

@zn 
(n)
i � ⌦̂(n)

ij  
(n)
j = '̂

(n)
R,i , (17)

where h'
(n)
R,i| = '̂

(n)
R,idzn from eq. (15). The ⌫n�1⇥⌫n�1

matrix ⌦̂(n) given by

⌦̂(n)
ij = �

�
C�1

(n�1)

�
ik n�1he

(n�1)
k |(@zn�!̂n)h

(n�1)
j i, (18)

and finally Pn is the set of poles of ⌦̂(n) given by the
union of the poles of its entries (including possible poles
at infinity).

We observe that the solution of eq. (17) around zn=p

can be formally written in terms of a path-ordered matrix
exponential

~ 
(n)=

✓Z zn

p
~'
(n)
R (y)Pe

�
R y
p ⌦(n)(w)

◆⇣
Pe

R zn
p ⌦(n)(w)

⌘
(19)

for a vector ~ (n) with entries  (n)
i . Nevertheless for its

use in eq. (16), it is sufficient to know only a few leading
orders of ~ 

(n) around each p 2 Pn. Therefore, it is
easier to find the solution of the system eq. (17) by a
holomorphic Laurent series expansion, using an ansatz for
each component  (n)

i , see [8, 10]. Such a solution exists if
the matrix Reszn=p ⌦(n) does not have any non-negative
integer eigenvalues, which we assume from now on.

The recursion terminates when n=1, in which case the
inner space is trivial: ⌫0 = he

(0)
1 | = |h

(0)
1 i = 1, and we

impose the initial conditions

⌦̂(1)
11 = !̂1 , 0h'

(1)
L |h

(0)
1 i = '

(n)
L , '

(1)
R,1 = '

(n)
R . (20)

In this case eqs. (16,17) reduce to a computation of uni-
variate intersection numbers [9, 12] previously studied
in [8, 10]. Plugging everything together, eq. (16) can be
expressed as

nh'
(n)
L |'

(n)
R i =(�1)n

X

pn2Pn

· · ·

X

p12P1

Res
zn=pn

· · · Res
z1=p1

⇣
'
(n)
L  

(1)
1i1
 
(2)
i1i2

· · · 
(n�1)
in�2in�1

 
(n)
in�1

⌘
, (21)

where the ranges of summations are im = 1, . . . , ⌫m and
each  (m)

im�1im
for m = 1, . . . ,n�1 is the solution of

@zm 
(m)
im�1im

� ⌦̂(m)
im�1jm�1

 
(m)
jm�1im

= ĥ
(m)
im�1im

, (22)

for all im with |h
(m)
im�1im

i = ĥ
(m)
im�1im

dzm coming from the
projection:

|h
(m)
im

i = |h
(m�1)
im�1

i ^ |h
(m)
im�1im

i , (23)

which is known a priori, because the bases of all inner
spaces are arbitrarily chosen. The matrices ⌦̂(m) needed
in eq. (22) are computed analogously to eq. (18). Notice
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
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u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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2
1 z
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On the Cut{1,3}, we obtain:
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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(3)
2 = ĥ
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be
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(4)
1 =

1

z4
, ê
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(3)
2 = ĥ
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Integral Decomposition

Baikov Polynomial

The sectors containing the MIs are

3

the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
P

ihe
(n�1)
i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],

nh'(n)
L |'(n)

R i=�
⌫n�1X

i=1

X

p2Pn

Res
zn=p

⇣
n�1h'(n)

L |h(n�1)
i i (n)

i

⌘
,(10)

where the functions  (n)
i are the solutions of the system

of differential equations

@zn 
(n)
i �

⌫n�1X

j=1

⌦̂(n)
ij  

(n)
j = '̂

(n)
R,i . (11)

The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2 � 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (12)

FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).

5

appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
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2
z
2
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(24)
1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê

(13)
2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,

ê
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(3)
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z3
, ê

(3)
2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1
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(d� 6)(d� 5)

st
, (44)
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2X
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h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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1 = ĥ
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(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z
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⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
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1 = ĥ
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2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=
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On the Cut{1,3}, we obtain:

=
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u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1
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with:
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3 MIs

Differential Equation

4

have endpoints on z = 1 as it is the only place where
h(z) ! +1. This alone fixes the shape of the paths
of steepest descent and ascent uniquely up to contour
deformations. We illustrate them in Fig. 1.

The critical points together with paths of steepest of
descent and ascent triangulate the manifold X into what is
known as a Morse–Smale complex. Denoting the number
of q-dimensional elements of this complex by bq (called
the Betti number) we have

�(X) =
2nX

q=0

(�1)q bq. (29)

For example, in Fig. 1 we can count 3 vertices (the filled
dots are not a part of X), 12 edges (ignoring orientations),
and 6 faces. Together with eq. (18) this gives us yet
another way of computing the number of MIs:

⌫ = (�1)1 (3� 12 + 6) = 3. (30)

For more background on Morse theory, see, e.g., [12, 15]
and in the context of twisted geometries [1, 6, 7, 14].

Hypergeometric Function 3F2 – We discuss the
application of our decomposition algorithm for deriving
contiguity relation for the hypergeometric function 3F2.
Consider the function H, defined as,

H
�a1a2a3

b1b2 ;x
�
⌘ �(a1, b1�a1)�(a2, b2�a2)3F2

�a1a2a3
b1b2 ;x

�

=

Z

C
u d

2z = h1(12)|C] , (31)

where �(a, b) = �(a)�(b)/�(a+b) is the Euler beta-
function,

u = (1�z1z2x)
�a3

2Y

i=1

z
ai�1
i (1�zi)

bi�ai�1
, (32)

d
2z = dz1 ^ dz2, and where C is the square with zi 2

[0, 1]. The system !̂1 = !̂2 = 0 has three solutions,
corresponding to ⌫(12) = 3 MIs. We choose three master
forms, he(12)i | ⌘ ê

(12)
i d

2z, (i = 1, 2, 3),

ê
(12)
1 =

1

z1
, ê

(12)
2 =

1

z2
, ê

(12)
3 =

1

1� z2
, (33)

which correspond to the following set of MIs,

H
�a1�1,a2,a3

b1�1,b2
;x

�
, H

�a1,a2�1,a3

b1,b2�1 ;x
�
, H

�a1,a2,a3

b1,b2�1 ;x
�
. (34)

At the same time, we define the dual basis, |h
(12)
i i ⌘

ĥ
(12)
i d

2z, with ĥ
(12)
i = ê

(12)
i (i = 1, 2, 3). The decomposi-

tion of h1| = d
2z in terms of he(12)i |,

h1(12)| =
3X

i=1

ci he
(12)
i | , (35)

yields the decomposition of the function defined in eq. (31)
in terms of those in eq. (34), which amounts to a conti-
guity relation for 3F2 functions. The coefficients ci are
determined by means of eq. (3), requiring the computa-
tion of 12 intersection numbers for two-forms, that is 9
elements of the matrix (C(12))ij = (12)he

(12)
i |h

(12)
j i and 3

entries (12)h1|h
(12)
j i for i, j = 1, 2, 3.

To apply eq. (5), we consider the z1-subspace as the
inner space. In turn, the number of MIs for the inner
space is determined by counting the number of solutions
of !̂1 = 0 (w.r.t. z1), giving ⌫(1) = 2. The inner bases
are he

(1)
i | ⌘ ê

(1)
i dz1, |h

(1)
i i ⌘ ĥ

(1)
i dz1 (i = 1, 2), which we

choose to be,

ê
(1)
1 = ĥ

(1)
1 =

1

z1
, ê

(1)
2 = ĥ

(1)
2 =

1

1� z1
. (36)

The individual intersection numbers are too large to be
printed here. Yet, the final result is rather simple, and,
in terms of 3F2-functions, it reads,

c̃0 3F2

�a1,a2,a3

b1,b2 ;x
�
= c̃1 3F2

�a1�1,a2,a3

b1�1,b2
;x

�
+

c̃2 3F2

�a1,a2�1,a3

b1,b2�1 ;x
�
+ c̃3 3F2

�a1,a2,a3

b1,b2�1 ;x
�
, (37)

where

c̃0 = (a1�1)(b1�b2) + (a1�a2)(b2�a3�1)x ,

c̃1 = (b1�1)(a1�b2) , c̃2 = (a2�b1)(1�b2) , (38)
c̃3 = (a1�a2)(1�b2)(1�x) .

This relation has been (numerically) verified with
Mathematica.

Differential Equation for One-loop Box - Let us consider
the differential equation:

@s = a1 + a2 + a3 , (39)

where we restore the s-dependent prefactor:

= K

Z

C

u d
4z

z1z2z3z4
, K = (�st(s+t))2�

d
2 . (40)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (22), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (41)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from

3

the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
P

ihe
(n�1)
i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],

nh'(n)
L |'(n)

R i=�
⌫n�1X

i=1

X

p2Pn

Res
zn=p

⇣
n�1h'(n)

L |h(n�1)
i i (n)

i

⌘
,(10)

where the functions  (n)
i are the solutions of the system

of differential equations

@zn 
(n)
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(n)
j = '̂

(n)
R,i . (11)

The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,
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FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).

5

Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz4 ^ dz2 (42)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (43)

with

a1 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (44)

a2 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz3 ^ dz1 (45)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (46)

where a1 is in agreement with eq. (44) and

a3 =
2X

j=1

h'2,4|e
(31)
j i

�
C�1

(31)

�
j2

= �
2(d� 3)

st(s+ t)
. (47)
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On the Cut{2,4}, we obtain

=

Z

C
u2,4 '2,4 , '2,4 = '̂2,4 dz1 ^ dz3, (45)

where '̂2,4 = !̂2

z2
1z3

. On this cut we have:

= c1 + c3 , (46)

where we find c1 in agreement with eq. (44) and

c3 =
2X

j=1

h'2,4|h
(13)
j i

�
C�1

(13)

�
j2

= �
4(d� 5)(d� 3)

st3
. (47)

Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
equation:

@s = a1 + a2 + a3 , (48)

where we restore the s-dependent prefactor:

= K

Z

C

u d
4z

z1z2z3z4
, K = (�st(s+t))2�

d
2 . (49)

On the Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 (50)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (51)

with

a1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (52)

a2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz1 ^ dz3 (53)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (54)

FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.

where a1 is in agreement with eq. (52) and

a3 =
2X

j=1

h'2,4|h
(13)
j i

�
C�1

(13)

�
j2

= �
2(d� 3)

st(s+ t)
. (55)

Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.

CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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On the Cut{2,4}, we obtain

=

Z

C
u2,4 '2,4 , '2,4 = '̂2,4 dz1 ^ dz3, (45)

where '̂2,4 = !̂2

z2
1z3

. On this cut we have:

= c1 + c3 , (46)

where we find c1 in agreement with eq. (44) and

c3 =
2X

j=1

h'2,4|h
(13)
j i

�
C�1

(13)

�
j2

= �
4(d� 5)(d� 3)

st3
. (47)

Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
equation:

@s = a1 + a2 + a3 , (48)

where we restore the s-dependent prefactor:

= K

Z

C

u d
4z

z1z2z3z4
, K = (�st(s+t))2�

d
2 . (49)

On the Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 (50)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (51)

with

a1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (52)

a2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz1 ^ dz3 (53)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (54)

FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.

where a1 is in agreement with eq. (52) and

a3 =
2X

j=1

h'2,4|h
(13)
j i

�
C�1

(13)

�
j2

= �
2(d� 3)

st(s+ t)
. (55)

Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.

CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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On the Cut{2,4}, we obtain

=

Z

C
u2,4 '2,4 , '2,4 = '̂2,4 dz1 ^ dz3, (45)

where '̂2,4 = !̂2

z2
1z3

. On this cut we have:

= c1 + c3 , (46)

where we find c1 in agreement with eq. (44) and

c3 =
2X

j=1

h'2,4|h
(13)
j i

�
C�1

(13)

�
j2

= �
4(d� 5)(d� 3)

st3
. (47)

Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
equation:

@s = a1 + a2 + a3 , (48)

where we restore the s-dependent prefactor:

= K

Z

C

u d
4z

z1z2z3z4
, K = (�st(s+t))2�

d
2 . (49)

On the Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 (50)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (51)

with

a1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (52)

a2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz1 ^ dz3 (53)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (54)

FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.

where a1 is in agreement with eq. (52) and

a3 =
2X

j=1

h'2,4|h
(13)
j i

�
C�1

(13)

�
j2

= �
2(d� 3)

st(s+ t)
. (55)

Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.

CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
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. On this specific cut we obtain:
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FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.
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Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.
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Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
equation:
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FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.
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Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.

CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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a similar structure, and therefore we expect that our
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ones considered here, which we plan to investigate in the
near future.
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embed what we believe is a clean role of analyticity in the
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(co)homology, where it was possible to relate them to
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CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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Box with four different masses

Integral family Denominators
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
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1 = ĥ

(24)
1 =

1

z2z4
, ê

(24)
2 = ĥ

(24)
2 = 1 , (37)

and for the inner space,

ê
(4)
1 = ĥ

(4)
1 =

1

z4
, ê

(4)
2 = ĥ

(4)
2 = 1 . (38)

• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
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2 = 1 , (39)

and for the inner space,
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2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:
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j i
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�
j1

=
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, (44)
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(24)
j i
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C�1

(24)

�
j2
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4(d� 5)(d� 3)

s3t
.

5

Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz4 ^ dz2 (42)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (43)

with

a1 =
2X

j=1
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j i
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, (44)
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On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz3 ^ dz1 (45)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (46)

where a1 is in agreement with eq. (44) and

a3 =
2X

j=1

h'2,4|e
(31)
j i
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j2
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. (47)
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Differential Equation
Box with four different masses

Integral family Denominators
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On the Cut{2,4}, we obtain

=

Z
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u2,4 '2,4 , '2,4 = '̂2,4 dz1 ^ dz3, (45)

where '̂2,4 = !̂2

z2
1z3

. On this cut we have:

= c1 + c3 , (46)

where we find c1 in agreement with eq. (44) and
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�
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�
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Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
equation:

@s = a1 + a2 + a3 , (48)

where we restore the s-dependent prefactor:
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On the Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 (50)
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On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz1 ^ dz3 (53)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (54)

FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.

where a1 is in agreement with eq. (52) and
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j i

�
C�1

(13)

�
j2

= �
2(d� 3)

st(s+ t)
. (55)

Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.

CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
equation:

@s = a1 + a2 + a3 , (48)

where we restore the s-dependent prefactor:
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On the Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 (50)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (51)

with

a1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (52)

a2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:
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with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (54)

FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.

where a1 is in agreement with eq. (52) and
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Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.

CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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Finally, the integral of eq. (41) is decomposed in terms of
MIs, as in eq. (36), in agreement with the IBP decompo-
sition.
Differential Equation. Let us consider the differential
equation:
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FIG. 2: Other examples of one- and two-loop integrals
reduced to MIs with the technique proposed in this work.
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Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.

CONCLUSIONS

Elaborating on the original proposal of [8] and on the
wider studies [10, 20], we have shown that Feynman in-
tegrals can be expressed in terms of a complete basis of
integrals, by making use of intersection numbers, which
act as scalar products for the vector space of integrals,
through the pairing of differential forms appearing in their
integrands. Let us notice that the final result of the recur-
sion eq. (21) should not depend on the parametrization
of the inner and outer space. Nevertheless, we observed
that suitably chosen variable orderings may simplify and
fasten the recursive procedure. This is a feature of the
proposed algorithm that requires a dedicated study, which
goes beyond the goal of the present work. Within Baikov
representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
decomposition algorithm can be applied to the case of
integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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Let us finally remark that we have successfully applied
the aforementioned algorithm to the complete decomposi-
tion of a few one- and two-loop integrals associated to the
diagrams shown in Fig. 2, involving the evaluation of up
to six-variable intersection numbers, and that the result-
ing expressions are in agreement with the IBP relations
[43–46]. Further examples are provided in the App. B.
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representation, one-loop and multi-loop integrands have
a similar structure, and therefore we expect that our
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integrals associated to more complex diagrams than the
ones considered here, which we plan to investigate in the
near future.

Scattering amplitudes are analytic functions, deter-
mined by their singularities. Intersection numbers, and
their relation to Stokes’ and Cauchy’s residue theorems,
embed what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals within the formalism of twisted
(co)homology, where it was possible to relate them to
the number of critical points and Euler characteristics
in the connection to Morse/Picard–Lefschetz theory
(as a special case of the Poincaré–Hopf index theorem).
Applications to Feynman integrals in representations
other than Baikov will also constitute topics of future
works. The present study can be broadly applied in the
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Abstract: We present a detailed description of the recent idea for a direct decompo-
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of multivariate intersection numbers, and provide three different approaches for a direct
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ture of Feynman integrals by computing intersection numbers supported on cuts, in various
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methods and integrand decomposition. We perform explicit computations to exemplify all of
these approaches applied to Feynman integrals, paving a way towards potential applications
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Conclusion

Novel Algebraic Property Unveiled

The algebra of Feynman Integrals is controlled by intersection numbers

Intersection Numbers : Scalar Product/Projection between Feynman Integrals

Novel decomposition method

Direct decomposition in a Integral Basis

No Intermediate relation required

Useful for both Physics and Mathematics
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2-Loop Electron-Muon Amplitude
Computation of 2-loop virtual amplitude for electron-muon scattering, relevant for the MUonE experiment

Bonciani, Di-Vita, Passera, Primo, MKM, Mastrolia, Mattiazzi, Ronca, Schubert , Torres Bobadilla , Tramontano 
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Figure 1: Two-loop four-point topologies for µe scattering.

2 The non-planar four-point topology

In this paper, we consider the µe scattering process

µ
+(p1) + e

�(p2) ! e
�(p3) + µ

+(p4) , (2.1)

in the approximation of vanishing electron mass, me = 0, i.e. with kinematics specified by

p
2
1 = p

2
4 = m

2
, p

2
2 = p

2
3 = 0 ,

s = (p1 + p2)
2
, t = (p2 � p3)

2
, u = (p1 � p3)

2 = 2m2
� t � s , (2.2)

where m is the muon mass. Representative Feynman diagrams of the 10 relevant two-

loop four-point topologies Ti that contribute to the process are depicted in figure 1. The

computation of the MIs belonging to the topologies T1,2,3,4,5,7,8,9,10 has been discussed

in [1]. In this paper, we complete the evaluation of all MIs required for the two-loop

virtual amplitude due to photonic corrections, by determining the analytic expression of

the MIs that belong to the non-planar topology T6.

– 4 –
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Intersection Theory: Example

5

appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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+ s
2
z
2
2 + t

2
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2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
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z2z4
, ê
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z
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1 z
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3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,
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and for the inner space,
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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. (41)

On the Cut{1,3}, we obtain:
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Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:
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can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
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obtained with the above techniques.
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
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N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
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, ê
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(24)
2 = 1 , (37)

and for the inner space,

ê
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
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, ê
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2 = 1 , (39)

and for the inner space,
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z3
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2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=
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u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z
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3 u(z1, 0, z3, 0) to obtain the corresponding
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space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
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ê
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=
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On the Cut{1,3}, we obtain:

=

Z

C
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z
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⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,
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and for the inner space,
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1
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Integral Decomposition

Baikov Polynomial

The sectors containing the MIs are

3

the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
P

ihe
(n�1)
i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],

nh'(n)
L |'(n)

R i=�
⌫n�1X

i=1

X

p2Pn

Res
zn=p

⇣
n�1h'(n)

L |h(n�1)
i i (n)

i

⌘
,(10)

where the functions  (n)
i are the solutions of the system

of differential equations

@zn 
(n)
i �

⌫n�1X

j=1

⌦̂(n)
ij  

(n)
j = '̂

(n)
R,i . (11)

The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2 � 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (12)

FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).

5

appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,
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and for the inner space,
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of
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On the Cut{1,3}, we obtain:
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.
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FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z
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4 u(0, z2, 0, z4) to obtain the corresponding
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(24)
1 =

1

z2z4
, ê
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z
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3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
Accordingly we choose the basis forms,

ê
(13)
1 = ĥ

(13)
1 =

1

z1z3
, ê

(13)
2 = ĥ

(13)
2 = 1 , (39)

and for the inner space,

ê
(3)
1 = ĥ

(3)
1 =

1

z3
, ê

(3)
2 = ĥ

(3)
2 = 1 . (40)

Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z

C

u d
4z

z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)

with:

c1 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j1

=
(d� 6)(d� 5)

st
, (44)

c2 =
2X

j=1

h'1,3|h
(24)
j i

�
C�1

(24)

�
j2

= �
4(d� 5)(d� 3)

s3t
.
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Differential Equation
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have endpoints on z = 1 as it is the only place where
h(z) ! +1. This alone fixes the shape of the paths
of steepest descent and ascent uniquely up to contour
deformations. We illustrate them in Fig. 1.

The critical points together with paths of steepest of
descent and ascent triangulate the manifold X into what is
known as a Morse–Smale complex. Denoting the number
of q-dimensional elements of this complex by bq (called
the Betti number) we have

�(X) =
2nX

q=0

(�1)q bq. (29)

For example, in Fig. 1 we can count 3 vertices (the filled
dots are not a part of X), 12 edges (ignoring orientations),
and 6 faces. Together with eq. (18) this gives us yet
another way of computing the number of MIs:

⌫ = (�1)1 (3� 12 + 6) = 3. (30)

For more background on Morse theory, see, e.g., [12, 15]
and in the context of twisted geometries [1, 6, 7, 14].

Hypergeometric Function 3F2 – We discuss the
application of our decomposition algorithm for deriving
contiguity relation for the hypergeometric function 3F2.
Consider the function H, defined as,

H
�a1a2a3

b1b2 ;x
�
⌘ �(a1, b1�a1)�(a2, b2�a2)3F2

�a1a2a3
b1b2 ;x

�

=

Z

C
u d

2z = h1(12)|C] , (31)

where �(a, b) = �(a)�(b)/�(a+b) is the Euler beta-
function,

u = (1�z1z2x)
�a3

2Y

i=1

z
ai�1
i (1�zi)

bi�ai�1
, (32)

d
2z = dz1 ^ dz2, and where C is the square with zi 2

[0, 1]. The system !̂1 = !̂2 = 0 has three solutions,
corresponding to ⌫(12) = 3 MIs. We choose three master
forms, he(12)i | ⌘ ê

(12)
i d

2z, (i = 1, 2, 3),

ê
(12)
1 =

1

z1
, ê

(12)
2 =

1

z2
, ê

(12)
3 =

1

1� z2
, (33)

which correspond to the following set of MIs,

H
�a1�1,a2,a3

b1�1,b2
;x

�
, H

�a1,a2�1,a3

b1,b2�1 ;x
�
, H

�a1,a2,a3

b1,b2�1 ;x
�
. (34)

At the same time, we define the dual basis, |h
(12)
i i ⌘

ĥ
(12)
i d

2z, with ĥ
(12)
i = ê

(12)
i (i = 1, 2, 3). The decomposi-

tion of h1| = d
2z in terms of he(12)i |,

h1(12)| =
3X

i=1

ci he
(12)
i | , (35)

yields the decomposition of the function defined in eq. (31)
in terms of those in eq. (34), which amounts to a conti-
guity relation for 3F2 functions. The coefficients ci are
determined by means of eq. (3), requiring the computa-
tion of 12 intersection numbers for two-forms, that is 9
elements of the matrix (C(12))ij = (12)he

(12)
i |h

(12)
j i and 3

entries (12)h1|h
(12)
j i for i, j = 1, 2, 3.

To apply eq. (5), we consider the z1-subspace as the
inner space. In turn, the number of MIs for the inner
space is determined by counting the number of solutions
of !̂1 = 0 (w.r.t. z1), giving ⌫(1) = 2. The inner bases
are he

(1)
i | ⌘ ê

(1)
i dz1, |h

(1)
i i ⌘ ĥ

(1)
i dz1 (i = 1, 2), which we

choose to be,

ê
(1)
1 = ĥ

(1)
1 =

1

z1
, ê

(1)
2 = ĥ

(1)
2 =

1

1� z1
. (36)

The individual intersection numbers are too large to be
printed here. Yet, the final result is rather simple, and,
in terms of 3F2-functions, it reads,

c̃0 3F2

�a1,a2,a3

b1,b2 ;x
�
= c̃1 3F2

�a1�1,a2,a3

b1�1,b2
;x

�
+

c̃2 3F2

�a1,a2�1,a3

b1,b2�1 ;x
�
+ c̃3 3F2

�a1,a2,a3

b1,b2�1 ;x
�
, (37)

where

c̃0 = (a1�1)(b1�b2) + (a1�a2)(b2�a3�1)x ,

c̃1 = (b1�1)(a1�b2) , c̃2 = (a2�b1)(1�b2) , (38)
c̃3 = (a1�a2)(1�b2)(1�x) .

This relation has been (numerically) verified with
Mathematica.

Differential Equation for One-loop Box - Let us consider
the differential equation:

@s = a1 + a2 + a3 , (39)

where we restore the s-dependent prefactor:

= K

Z

C

u d
4z

z1z2z3z4
, K = (�st(s+t))2�

d
2 . (40)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (22), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (41)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from

3

the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
P

ihe
(n�1)
i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],

nh'(n)
L |'(n)

R i=�
⌫n�1X

i=1

X

p2Pn

Res
zn=p

⇣
n�1h'(n)

L |h(n�1)
i i (n)

i

⌘
,(10)

where the functions  (n)
i are the solutions of the system

of differential equations

@zn 
(n)
i �

⌫n�1X

j=1

⌦̂(n)
ij  

(n)
j = '̂

(n)
R,i . (11)

The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2 � 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (12)

FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).
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Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz4 ^ dz2 (42)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (43)

with

a1 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (44)

a2 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz3 ^ dz1 (45)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (46)

where a1 is in agreement with eq. (44) and

a3 =
2X

j=1

h'2,4|e
(31)
j i

�
C�1

(31)

�
j2

= �
2(d� 3)

st(s+ t)
. (47)

⇤ hjalte.frellesvig@pd.infn.it
† federico.gasparotto@pd.infn.it
‡ manojkumar.mandal@pd.infn.it
§ pierpaolo.mastrolia@pd.infn.it
¶ luca.mattiazzi@pd.infn.it

⇤⇤ smizera@pitp.ca
[1] Sebastian Mizera, “Aspects of Scattering Amplitudes and

Moduli Space Localization,” (2019), arXiv:1906.02099
[hep-th].

[2] Pierpaolo Mastrolia and Sebastian Mizera, “Feynman In-
tegrals and Intersection Theory,” JHEP 02, 139 (2019),
arXiv:1810.03818 [hep-th].

[3] Hjalte Frellesvig, Federico Gasparotto, Stefano Laporta,
Manoj K. Mandal, Pierpaolo Mastrolia, Luca Mattiazzi,
and Sebastian Mizera, “Decomposition of Feynman In-
tegrals on the Maximal Cut by Intersection Numbers,”
JHEP 05, 153 (2019), arXiv:1901.11510 [hep-ph].

[4] Koji Cho and Keiji Matsumoto, “Intersection theory for
twisted cohomologies and twisted Riemann’s period rela-
tions I,” Nagoya Math. J. 139, 67–86 (1995).

[5] Keiji Matsumoto, “Intersection numbers for logarithmic
k-forms,” Osaka J. Math. 35, 873–893 (1998).

[6] K. Aomoto and M. Kita, Theory of Hypergeometric Func-
tions, Springer Monographs in Mathematics (Springer
Japan, 2011).

[7] Kazuhiko Aomoto, “On vanishing of cohomology attached
to certain many valued meromorphic functions,” J. Math.
Soc. Japan 27, 248–255 (1975).

[8] Roman N. Lee and Andrei A. Pomeransky, “Critical points
and number of master integrals,” JHEP 11, 165 (2013),
arXiv:1308.6676 [hep-ph].

[9] Paolo Aluffi and Matilde Marcolli, “Feynman motives of
banana graphs,” Commun. Num. Theor. Phys. 3, 1–57
(2009), arXiv:0807.1690 [hep-th].

[10] Matilde Marcolli, “Motivic renormalization and singulari-
ties,” Quanta of Maths: Proceedings, Conference on Non-
commutative geometry in honor of Alain Connes, Paris,
France, Mar 29 - Apr 6, 2007, Clay Math. Proc. 11,
409–458 (2010), arXiv:0804.4824 [math-ph].

[11] Thomas Bitoun, Christian Bogner, Rene Pascal Klausen,
and Erik Panzer, “Feynman integral relations from para-
metric annihilators,” Lett. Math. Phys. 109, 497–564
(2019), arXiv:1712.09215 [hep-th].

[12] J. Milnor, Morse Theory. (AM-51), Annals of Mathemat-
ics Studies No. v. 51 (Princeton University Press, 2016).

[13] Roberto Silvotti, “On a conjecture of Varchenko,” Inven-
tiones mathematicae 126, 235–248 (1996).

[14] Sebastian Mizera, “Scattering Amplitudes from Inter-
section Theory,” Phys. Rev. Lett. 120, 141602 (2018),
arXiv:1711.00469 [hep-th].

[15] Edward Witten, “Analytic Continuation Of Chern-Simons
Theory,” Chern-Simons gauge theory: 20 years after.
Proceedings, Workshop, Bonn, Germany, August 3-7,
2009, AMS/IP Stud. Adv. Math. 50, 347–446 (2011),
arXiv:1001.2933 [hep-th].

5

Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
Cut1,3 we obtain:

@s = K

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz4 ^ dz2 (42)

with '̂1,3 = f
z2z4

and f = 1
Ku

@(Ku)
@s . On this cut we have:

@s = a1 + a2 (43)

with

a1 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j1

=
(d� 6)t� 2s

2s(s+ t)
, (44)

a2 =
2X

j=1

h'1,3|e
(42)
j i

�
C�1

(42)

�
j2

=
2(d� 3)

s2(s+ t)
.

On the Cut2,4 we have:

@s = K

Z

C
u2,4 '2,4, '2,4 = '̂2,4 dz3 ^ dz1 (45)

with '̂2,4 = f
z1z3

. On this specific cut we obtain:

@s = a1 + a3 , (46)

where a1 is in agreement with eq. (44) and

a3 =
2X

j=1

h'2,4|e
(31)
j i

�
C�1

(31)

�
j2

= �
2(d� 3)

st(s+ t)
. (47)

⇤ hjalte.frellesvig@pd.infn.it
† federico.gasparotto@pd.infn.it
‡ manojkumar.mandal@pd.infn.it
§ pierpaolo.mastrolia@pd.infn.it
¶ luca.mattiazzi@pd.infn.it

⇤⇤ smizera@pitp.ca
[1] Sebastian Mizera, “Aspects of Scattering Amplitudes and

Moduli Space Localization,” (2019), arXiv:1906.02099
[hep-th].

[2] Pierpaolo Mastrolia and Sebastian Mizera, “Feynman In-
tegrals and Intersection Theory,” JHEP 02, 139 (2019),
arXiv:1810.03818 [hep-th].

[3] Hjalte Frellesvig, Federico Gasparotto, Stefano Laporta,
Manoj K. Mandal, Pierpaolo Mastrolia, Luca Mattiazzi,
and Sebastian Mizera, “Decomposition of Feynman In-
tegrals on the Maximal Cut by Intersection Numbers,”
JHEP 05, 153 (2019), arXiv:1901.11510 [hep-ph].

[4] Koji Cho and Keiji Matsumoto, “Intersection theory for
twisted cohomologies and twisted Riemann’s period rela-
tions I,” Nagoya Math. J. 139, 67–86 (1995).

[5] Keiji Matsumoto, “Intersection numbers for logarithmic
k-forms,” Osaka J. Math. 35, 873–893 (1998).

[6] K. Aomoto and M. Kita, Theory of Hypergeometric Func-
tions, Springer Monographs in Mathematics (Springer
Japan, 2011).

[7] Kazuhiko Aomoto, “On vanishing of cohomology attached
to certain many valued meromorphic functions,” J. Math.
Soc. Japan 27, 248–255 (1975).

[8] Roman N. Lee and Andrei A. Pomeransky, “Critical points
and number of master integrals,” JHEP 11, 165 (2013),
arXiv:1308.6676 [hep-ph].

[9] Paolo Aluffi and Matilde Marcolli, “Feynman motives of
banana graphs,” Commun. Num. Theor. Phys. 3, 1–57
(2009), arXiv:0807.1690 [hep-th].

[10] Matilde Marcolli, “Motivic renormalization and singulari-
ties,” Quanta of Maths: Proceedings, Conference on Non-
commutative geometry in honor of Alain Connes, Paris,
France, Mar 29 - Apr 6, 2007, Clay Math. Proc. 11,
409–458 (2010), arXiv:0804.4824 [math-ph].

[11] Thomas Bitoun, Christian Bogner, Rene Pascal Klausen,
and Erik Panzer, “Feynman integral relations from para-
metric annihilators,” Lett. Math. Phys. 109, 497–564
(2019), arXiv:1712.09215 [hep-th].

[12] J. Milnor, Morse Theory. (AM-51), Annals of Mathemat-
ics Studies No. v. 51 (Princeton University Press, 2016).

[13] Roberto Silvotti, “On a conjecture of Varchenko,” Inven-
tiones mathematicae 126, 235–248 (1996).

[14] Sebastian Mizera, “Scattering Amplitudes from Inter-
section Theory,” Phys. Rev. Lett. 120, 141602 (2018),
arXiv:1711.00469 [hep-th].

[15] Edward Witten, “Analytic Continuation Of Chern-Simons
Theory,” Chern-Simons gauge theory: 20 years after.
Proceedings, Workshop, Bonn, Germany, August 3-7,
2009, AMS/IP Stud. Adv. Math. 50, 347–446 (2011),
arXiv:1001.2933 [hep-th].

3

the number ⌫ can be accessed before the decomposition,
as dictated by the geometrical properties of the graph
(Baikov) polynomial associated to each Feynman diagram.

Multivariate Intersection Numbers - A generic rational
n-form can be decomposed into a combination of a 1-
form and a (n�1)-form, as h'(n)

L | =
P

ihe
(n�1)
i |^h'(n)

L,i |
, |'(n)

R i =
P

j |h
(n�1)
j i^|'(n)

R,ji , where i, j = 1, . . . , ⌫n�1,
with ⌫n�1 being the number of MIs in the inner space,
spanned by the arbitrary bases he(n�1)

i |, |h(n�1)
j i. In the

above expressions, h'(n)
L,i | and |'(n)

R,ji are 1-forms (in the
variable zn), and they can be treated as coefficients of the
basis expansion and hence obtained by projection. Then,
n-form intersection numbers can be evaluated recursively
in terms of (n�1)-form intersection numbers as [21],

nh'(n)
L |'(n)

R i=�
⌫n�1X

i=1

X

p2Pn

Res
zn=p

⇣
n�1h'(n)

L |h(n�1)
i i (n)

i

⌘
,(10)

where the functions  (n)
i are the solutions of the system

of differential equations

@zn 
(n)
i �

⌫n�1X

j=1

⌦̂(n)
ij  

(n)
j = '̂

(n)
R,i . (11)

The matrix ⌦̂(n) is defined through a differential equation
obeyed by |h(n�1)

i i , and Pn is the set of poles of
⌦̂(n) (including possible poles at infinity). Additional
mathematical details are provided in [35], for the
interested readers.

Integral Decomposition: Bottom-up approach - For a given
integral, any set of its denominators identifies a sector.
Therefore, one maximal-cut (when all denominators are
cut) corresponds to each sector. The number of MIs in
each sector can be determined by counting the number
of critical points of the corresponding maximal-cut [36],
using eq. (9).
After determining the number of MIs, the decomposition
of Feynman integrals can be obtained by means of eq. (6).
This is done by redefining u, namely by multiplying it
with a regulating factor z

⇢i
i for each uncut denominator,

where the exponents ⇢i are regulators to be put to zero at
the end of the calculation. This is done in order to allow
the theory to access sectors where the regulated variables
appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate
intersections requires fewer iterations. A minimal set of
spanning cuts is sufficient to retrieve the information of
the complete decomposition [37], and then, using the
regulated u, the master decomposition formula (6) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations

may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.
As discussed in refs. [9, 11] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , and

dimensional recurrence relations for MIs can be obtained
with the above techniques.

Massless Box Diagram – Let us consider the massless box
diagram at one loop, Fig. 1. Within the BR,

u(z) =
�
(st�sz4�tz3)

2 � 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
1 � 2sz2(t(s�z3)+z4(s+2t))

� d�5
2
. (12)

FIG. 1: Massless box with massless external legs: p
2
i = 0,

for i = 1, 2, 3, 4, with s = (p1 + p2)2 and t = (p2 + p3)2.

For each of the 15 (= 24�1) sectors, we use eq. (9) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are [38]: N{1,2,3,4} = 1, N{1,3} =
1, N{2,3} = 1, amounting to 3 MIs. We choose them to
be:

J1 = , J2 = , J3 = , (13)

so that any integral I of the form of eq. (1), with u given
in eq. (12), and ' defined in eq. (2) (with n = 4), can be
decomposed as,

= c1 + c2 + c3 . (14)

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.
• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the in-
ner space, using eq. (9), we get ⌫(42) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
(42)
1 =

1

z2z4
, ê

(42)
2 = 1 , ê

(4)
1 =

1

z4
, ê

(4)
2 = 1 . (15)

• Cut{2,4} : Due to the symmetry of the graph under
the exchange of s and t, Cut{2,4} can be obtained from
Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3).

With the help of eq. (6) and using the multivariate inter-
section numbers for 2-forms, we determine the coefficients
ci in eq. (14).
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with '̂2,4 = f
z1z3
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where a1 is in agreement with eq. (44) and
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:
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so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,
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If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
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appear as propagators. The determination of coefficients
can be performed on unitarity cuts, where the integrands
are simpler, and the evaluation of the multivariate in-
tersections requires fewer iterations. A minimal set of
spanning cuts will be sufficient to retrieve the information
on the complete decomposition [42], and then, using the
regulated u, the master decomposition formula (8) yields
the coefficients of those MIs that survive on the cut. As
in the case of IBP-based approaches, additional relations
may be obtained from the symmetries of the diagrams, in
order to minimize the number of independent integrals.

As discussed in refs. [8, 10] also differential equations
in kinematic variables, e.g. @sJi =

P
j aijJj , can be

obtained with the above techniques.

MASSLESS BOX

FIG. 1: Massless box with massless external legs
(p2i = 0, for i = 1, 2, 3, 4). The invariants are s = (p1+p2)2

and t = (p2 + p3)2.

Let us consider the massless box diagram at one loop,
Fig. 1. Within the BR,
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�
(st�sz4�tz3)

2
� 2tz1(s(t+2z3�z2�z4)+tz3)

+ s
2
z
2
2 + t

2
z
2
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� d�5
2
. (34)

For each of the 15 (= 24�1) sectors, we use eq. (11) on
the corresponding cut, to determine the number Nsector of
MIs. The non-zero cases are6: N{1,2,3,4} = 1, N{1,3} = 1,
N{2,3} = 1, amounting to 3 MIs. We choose them to be:

J1 = , J2 = , J3 = , (35)

so that any integral I of the form of eq. (1), with u given
in eq. (34), and ' defined in eq. (33) (with n = 4), can
be decomposed as,

= c1 + c2 + c3 . (36)

6
If the Baikov polynomial B is a non-zero constant on the maximal

cut, the integral is fully localized by the cut-conditions. In this

case, the condition ! = 0 is always satisfied, and there is ⌫ = 1
master integral.

We determine the set of spanning cuts as (Cut{1,3},
Cut{2,4}) to obtain the full decomposition.

• Cut{1,3} : On this specific cut, we use the regularized
u1,3 = z

⇢2
2 z

⇢4
4 u(0, z2, 0, z4) to obtain the corresponding

!̂2 and !̂4. After choosing the z4-coordinate as the inner
space, using eq. (11), we get ⌫(24) = 2, and ⌫(4) = 2.
Accordingly, we choose the basis forms,

ê
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1 = ĥ

(24)
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1

z2z4
, ê

(24)
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2 = 1 , (37)

and for the inner space,

ê
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, ê
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(4)
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• Cut{2,4} : On this specific cut, we use the regularized
u2,4 = z

⇢1
1 z

⇢3
3 u(z1, 0, z3, 0) to obtain the corresponding

!̂1 and !̂3. After choosing the z3-coordinate as the inner
space, using eq. (11), we get ⌫(13) = 2, and ⌫(3) = 2.
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Now, with the help of eq. (8) and using eq. (16) for
the computation the individual multivariate (here 2-form)
intersection numbers, we determine the coefficients ci in
eq. (36).
Example. Let us illustrate the decomposition of

=

Z
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u d
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z
2
1 z

2
2 z3 z4

. (41)

On the Cut{1,3}, we obtain:

=

Z

C
u1,3 '1,3 , '1,3 = '̂1,3 dz2 ^ dz4 , (42)

where '̂1,3 = !̂1

z2
2z4

. On this specific cut we have:

= c1 + c2 , (43)
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Cut{1,3}, with the substitution of (z4, z2) ! (z3, z1), and
the space labels (42) ! (31) and (4) ! (3). On the
Cut1,3 we obtain:

@s = K
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u1,3 '1,3 , '1,3 = '̂1,3 dz4 ^ dz2 (42)

with '̂1,3 = f
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and f = 1
Ku

@(Ku)
@s . On this cut we have:
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On the Cut2,4 we have:
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u2,4 '2,4, '2,4 = '̂2,4 dz3 ^ dz1 (45)

with '̂2,4 = f
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. On this specific cut we obtain:

@s = a1 + a3 , (46)

where a1 is in agreement with eq. (44) and
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Differential Equation

Box with four different masses

Integral family Denominators

s = (p1 + p2)2, t = (p2 + p3)2
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